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ABSTRACT

The differential energy spectra of cosmic-ray protons and He

nuclei have been measured at energies up to 315 MeV/nucleon using

balloon- and satellite-borne instruments. These spectra are presented

for solar quiet times for the years 1966 through 1970. The data

analysis is verified by extensive accelerator calibrations of the

detector systems and by calculations and measurements of the production

of secondary protons in the atmosphere.

The spectra of protons and He nuclei in this energy range are

dominated by the solar modulation of the local interstellar spectra.

The transport equation governing this process includes as parameters

the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which

is assumed to be a scalar function of heliocentric radius, r, and

magnetic rigidity, R. The interstellar spectra, jD' enter as boundary

conditions on the solutions to the transport equation. Solutions to the

transport equation have been calculated for a broad range of assumed

values for K(r,R) and jD and have been compared with the measured

spectra.

It is found that the solutions may be characterized in terms

of a dimensionless parameter,

*(rR) V dr'
(r,R) = , -K(rR)

r

The amount of modulation is roughly proportional to i. At high energies

or far from the Sun, where the modulation is weak, the solution is
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determined primarily by the value of * (and the interstellar spectrum)

and is not sensitive to the radial dependence of the diffusion

coefficient. At low energies and for small r, where the effects of

adiabatic deceleration are found to be large, the spectra are largely

determined by the radial dependence of the diffusion coefficient and are

not very sensitive to the magnitude of i or to the interstellar spectra.

This lack of sensitivity to jD implies that the shape of the spectra at

Earth cannot be used to determine the interstellar intensities at low

energies.

Values of 1 determined from electron data were used to

calculate the spectra of protons and He nuclei near Earth. Interstellar

-2.65
spectra of the form jD a (W - 0.25m) for both protons and He nuclei

were found to yield the best fits to the measured spectra for these

values of *r, where W is the total energy and m is the rest energy. A

simple model for the diffusion coefficient was used in which the radial

and rigidity dependence are separable and K is independent of radius

inside a modulation region which has a boundary at a distance D. Good

agreement was found between the measured and calculated spectra for the

years 1965 through 1968, using typical boundary distances of 2.7 and

6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter

than in previous years. This flattening could be explained in part

by an increase in D, but also seemed to require that a noticeable

fraction of the observed protons at energies as high at 50 to 100 MeV

be attributed to quiet-time solar emission. The turnup in the spectra

at low energies observed in all years was also attributed to solar

emission. The diffusion coefficient used to fit the 1965 spectra is in
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reasonable agreement with that determined from the power spectra of the

interplanetary magnetic field (Jokipii and Coleman, 1968). We find a

factor of roughly 3 increase in 4 from 1965 to 1970, corresponding to

the roughly order of magnitude decrease in the proton intensity at

250 MeV. The change in * might be attributed to a decrease in the

diffusion coefficient, or, if the diffusion coefficient is

essentially unchanged over that period (Mathews et al., 1971), might be

attributed to an increase in the boundary distance, D.
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I. INTRODUCTION

The quantitative study of the effects of the interplanetary

medium on the spectra of cosmic rays in their passage from interstellar

space to the Earth is of great importance. Such a study can provide

information on two very interesting subjects: the local interstellar

spectra and the interplanetary medium.

The interstellar cosmic-ray spectra provide one of the most

useful means of quantitatively testing models of astrophysical particle

acceleration mechanisms, they provide direct material samples of

astrophysical objects (e.g., supernovae, pulsars, etc.), and they carry

information on the physical properties of the interstellar medium.

In penetrating the interplanetary medium the galactic cosmic

rays serve as sensitive probes of this medium, thus allowing a study

of the sphere of influence of a star, the Sun. In addition to its

intimate connection with solar physics, the interplanetary medium is a

very interesting example of a collisionless plasma and it is the plasma-

like properties of this medium which lead to the modulation of the

galactic cosmic rays.

The modulation of cosmic rays by the interplanetary medium is

quantitatively determined by a transport equation. The physical model

(Parker, 1963) upon which this equation is based represents the solar

system as being filled with an expanding fully ionized and highly

conducting plasma, the solar wind, which contains frozen-ir irregular

magnetic fields. Cosmic rays are scattered from these irregularities
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and execute a random walk in the solar wind. The particles are con-

vected outwards by the flow of the solar wind, diffuse inwards, and

are decelerated by the adiabatic cooling associated with the expansion

of the solar wind. The parameters required to define the transport

equation and its solution are the diffusion tensor, K, which is

generally a function of radius and energy, the solar wind velocity, and

the interstellar energy spectrum, jD(T). The solar wind velocity has

been measured by a number of investigators over a considerable time

span (Gosling et al., 1971) and is reasonably well known. Jokipii

(1966, 1967, 1968) has shown that the diffusion coefficient may be

determined from measurements of the power spectra of the temporal

fluctuations in the magnetic field observed at a point in space,and

diffusion coefficients have been calculated from such measurements.

However, the so-far, limited scope of space exploration has not yet

allowed in situ measurements over sufficiently large regions of

frequency (energy), radius, or time to completely determine this

parameter.

A further problem lies in the fact that it has not been

possible to find an analytic solution to the transport equation for

reasonably realistic forms of the diffusion coefficient, K(rT).

Several analytic approximations exist but it is difficult to judge to

what extent these approximations are valid.

In this thesis,we present numerical solutions of the transport

equation which have been calculated for a wide range of parameters. By

comparing the numerical and analytic solutions,we are able to set limits,

within which a given approximation is useful and outside of which it
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breaks down.

We also present measurements made of the energy spectra of

protons and He nuclei for each of the years 1966 through 1970, a

significant fraction of the current solar cycle. These spectra were

measured with instruments whose accuracy and reliability represent a

considerable improvement over previous investigations. This improvement

is due to extensive calibrations with particle accelerators and the

first unambiguous measurements ever made of atmospheric secondary

production. We make use of these spectra and the numerical solutions

to the transport equation to place limits on the relations between

the parameters, K and jD' and to infer the radial and energy dependence

of K.
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II. INSTRUMENT

The observations to be described in this thesis were made with

two detector systems, which are physically very similar to each other.

One instrument, the pae system, was flown on high-altitude balloons; the

other was on the OG0-6 satellite and will be referred to as the OGO-6

system. These instruments have been previously described (Althouse

et al., 1967; Wenzel, 1968; Murray, 1970; Lupton, 1971) and their

properties are briefly summarized here for the sake of completeness.

The instrument which we shall discuss is the pae instrument; some

differences between it and the OGO-6 instrument are noted in section D

of this chapter.

Each instrument includes two separate particle detectors, the

"range telescope" and the "6erenkov telescope." The range telescope

(see section A) performs energy-loss and range measurements on charged

particles. These measurements are used to determine the differential

energy spectra of protons and He nuclei from about 1 to 315 MeV/nucleon

and their integral fluxes above 315 MeV/nucleon. The 6erenkov telescope

makes energy-loss and derenkov-radiation measurements which are used to

determine integral intensities of protons and He nuclei above 400 MeV/

nucleon. Both telescopes are sensitive to electrons and other charged

particles as well as protons and He nuclei; however, in this work we

are concerned only with protons and He nuclei and treat other

particles as background.
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A. The pae Range Telescope

A cross section of the range telescope is shown in Figure II-1.

It consists of a stack of seven solid-state detectors, D1 through D7,

separated by absorbers, A2 - A6, and enclosed in a guard counter, D8. The

energy loss is measured in D1, D2, and D3 using 256-channel pulse-height

analyzers and in the range detectors,D4 - D7,using a multilevel discrim-

inator system which has only three possible states and therefore much

less resolution. The range of an incident particle is determined by

the number of detectors which are penetrated by the particle. D8 is

used in active anticoincidence to reject particles with trajectories

which leave or enter the side of the stack. Figure II-2 shows the

nominal response to protons and alpha particles. The average energy

loss in D1, D2, and D3 is plotted as a function of incident energy; and

the average energy necessary to reach each of the range detectors is

indicated.

D1 is a totally depleted silicon surface-barrier detector with

a thickness of 100p and a diameter of 1.86 cm. The threshold of the D1

discriminator is set to trigger only if a particle has an energy loss

of more than 400 keV. Low-energy protons may have an energy loss of

several MeV in D1, while electrons with kinetic energies of more than

400 keV, which are relativistic and near minimum ionizing, will penetrate

D1 with an energy loss typically < 200 keV. Thus low-energy protons

can be easily distinguished from electrons.

D2 through D7 are lithium-drifted silicon detectors of about

1000p depletion depth at 40V bias and a diameter of about 2.3 cm.

Absorber A2 is made of aluminum; A3 through A6 are made of a tungsten
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alloy (Mallory 2000, p = 18 gm/cm3). The absorber thicknesses are

shown in Figure II-1. The absorber diameter is 2.41 cm.

D8 is 1 cm thick and made of NE-102 plastic scintillator

material. It is housed in a thin-walled aluminum can which is painted

white on the inside and is viewed by an RCA 4439 photomultiplier tube.

The energy loss resolution of D8 is not critical since it serves only

anticoincidence purposes. The discriminator threshold was set so that

any charged particle penetrating more than about 3 mm of the scintillator

at any point would give sufficient light to trigger the anticoincidence

signal.
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B. The pCe 6erenkov Telescope

This system, illustrated in Figure II-3, consists of two solid

state detectors, Di' and D2', in which we measure energy loss, and a

quartz 6erenkov radiator viewed by an EMI 9647QNB photomultiplier tube,

D3', with a guard counter, D4'. The quartz radiator is the window of.

the phototube, thus guaranteeing good optical coupling. The upper

surface of the quartz is painted black so that a large fraction of the

light produced by backward moving particles is absorbed.

Figure II-4 shows the average energy loss of nuclei with Z < 8

in 1000l of silicon plotted against their relative light output in

quartz. By using a bi-linear amplifier, we are able to resolve nuclei

up to oxygen. There is no &erenkov light emitted by particles with

velocity less than v = c/n, where n is the index of refraction of quartz.

This velocity corresponds to an energy of about 350 MeV for protons.

The discriminator threshold is set at a level corresponding to 400-MeV

protons.

Dl' and D2' are lithium-drifted silicon detectors similar to

D2 and D3. They are matched to each other and the associated amplifiers

are adjusted so that the average response of the two detector-amplifier

systems are equal. Only the smaller of the two signals is analyzed.

This selection helps to reduce the statistical fluctuations in the energy

loss (see Chapter IV).
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C. The pue Electronics

A simplified block diagram of the pae electronic logic system

is shown in Figure II-5. Each of the detectors is connected to an

amplifier and a discriminator. The discriminators on the range detectors

are composed of a low discriminator and a high discriminator. The dis-

crimination thresholds are set so that the low discriminators will trigger

on any charged particle which penetrates the detectors while the high

discriminators will fire only for protons which have an energy of less

than -300 MeV at the top of the detector stack (or any particle with

Z > 1). This feature aids in distinguishing electrons, muons, and inter-

acting protons (see Appendix 1). The electronic logic uses the dis-

criminator signals to decide if there is a valid event; and if so, which

analog signals should be pulse height analyzed. The requirements for

various events and the analyzed signals are listed in Table II-1. B is

the "busy signal" which indicates the logic is occupied. After each

event 210 msec are required to write the data onto magnetic tape; the

busy signal blocks analysis of new events during this period.

Rate scalers count the number of D2D3D8, Di'D2'D3'D4', D8, and

D4' events. The rate scaling proceeds without regard to the busy signal

and, hence, with negligible dead time (the discriminator-rate-scaler-

system dead time is -100 psec; event rates are typically less than 10

events per second).

Figure II-6 shows the data word which is written on a (16

channel) magnetic tape for each analyzed event. PHA1 and PHA2 are the

pulse heights of the two analyzed signals. The indicator bits and the

range bits show which detectors fired and hence, which analog signals
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were analyzed. The rate bits indicate the state of the highest-order

bit of each of the four rate scalers. A particular scaler has counted

a number of events equal to half its maximum capacity each time its

rate bit changes. The average rate is determined by dividing that

number by the time between bit changes. In addition to the data shown

in Figure II-5, we also record time and temperature. The time signal

is derived from an Accutron clock with a one minute period and is

counted by a 4-bit scaler.



10

Signals Required for Analysis

D1 D8 B

D1 D2 D3 D8 B

D1' D2' D3' D4' B

Pulse-Height-Analyzed Signals

D1, D2

D2, D3

D2', D3'

D1' > D2'

D1' D2' D3' D4' B D1', D3'

D1' < D2'

Table II-1 Requirements for analysis of an event and the analyzed sig-
nals. The "bar" implies logical complement.
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D. The OGO-6 Instrument

This instrument has been described in previous reports

(Althouse et al., 1967; Murray, 1970; Lupton, 1971). We mention here

those differences from pae which influence the data analysis.

OGO-6 has a third pulse-height analyzer. If the range detectors

are not triggered,we record three pulse heights (D1, D2, and D3 or D1',

D2', and D3'. If the range detectors are triggered, the D2 and D3 pulse

heights are recorded.

OGO-6 readout is synchronous. The experiment returns a data

word at fixed intervals with a flag bit to indicate whether it is a new

event or a redundant readout of an old event. Synchronous readout means

that the time is known with a resolution of a few milliseconds. The

normal readout rate is about 7 events per second so that the dead time

is slightly less than pae.

There are 20 rates which are scaled, including D2D3D8 and

D1'D2'D3'D4' which are used to calculate the dead time correction.

All of the solid-state detectors in OGO-6 were surface-barrier

detectors. The surface-barrier detectors have much smaller dead layers

than the lithium-drifted detectors in pce, which simplifies measurements

of low-energy particles. (The low-energy particles seen by pxe are

almost entirely atmospheric secondaries so that the dead-layer problem

is not important.) There were also small variations in the diameters

and thicknesses of the detectors between OGO-6 and pae.

The D2 and D3 pulse-height analyzers in pce and OGO-6 differed

in resolution and dynamic range. The D2 and D3 analyzers in pce had

256 channels with channel widths of about 33 keV; the channel width
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of the OGO-6 analyzers was about 50 keV. The larger channel width of

the OGO-6 analyzers allowed them to digitize the large energy losses

of the low-energy protons without saturating at as low a level as the

pxe pulse-height analyzers.
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III. OBSERVATIONS

The criteria used in selecting the data for analysis are quite

different for pae and OGO-6.

Since the OGO-6 satellite was in a polar orbit within the

Earth's magnetosphere, the OGO-6 data are selected on the basis of

latitude, local time, etc., to ensure that we measure the interplanetary

particle spectra, not that of geomagnetically trapped particles.

Selection was also done on the basis of solar activity.

The pce data discussed in this work were obtained from balloon

flights made from Fort Churchill, Manitoba. A maximum pressure altitude

of about 2-3 millibars (equivalent to -2 gm/cm2 residual atmosphere) was

typical. Because of the problems of energy loss, absorption of

primaries in the atmosphere,and the production of secondaries in the

atmosphere, pue proton spectra below 60 MeV are not presented in this

work. This energy corresponds to a rigidity of 350 MV and it is clear

(Isreal and Vogt, 1969; Fanselow and Stone, 1972) that at these rigidities

we have access to the interplanetary spectra and need not concern our-

selves with geomagnetic effects. It is also clear that the effects of

the atmosphere on the spectra must be carefully considered.
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A. Balloon Flights

Aphotobarograph was flown with the pae balloon gondola in order

to determine atmospheric pressure and,hence,the amount of residual

atmosphere above the experiment. The photobarograph consists of a

camera system and a barometer, thermometer, and clock. A photograph

is taken of these instruments at regular intervals to record the

pressure and temperature as a function of time. These data allow us to

construct an altitude curve -- a typical example is shown in Figure III-1.

On the basis of this curve the flight is broken up into one or more

"float" periods and several "ascent" periods. Ascent periods are chosen

by a compromise between altitude resolution and counting statistics. An

ascent period is typically -10 minutes, very short compared to a typical

float period of 10 hours. For this reason, data from all the ascent

periods at a given altitude during one series of balloon flights

(typically spread over a month's time) are added together in order to

reduce statistical fluctuations.

Figure III-2 illustrates the large changes in counting rates

due to changes in altitude. The rate of D2D3D8 events, which are

primarily due to protons of greater than 18 MeV kinetic energy, is

plotted as a function of time and, hence, altitude (see again Figure III-

1). The large excursions in the counting rates plotted in Figure III-2

emphasize the importance of correcting the data for atmospheric effects.

Table III-1 is a list of all the balloon flights pertinent to

this thesis. All of these flights were made with-the telescopes pointed

upwards to observe the flux of particles impinging upon the Earth from

interplanetary space.
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Length
of
Flo t Period
(104 sec)

2.57
3.45
4.87

3.22
5.33

3.75
3.15

2.98
3.48
3.15
4.00

3.21

Nominal
Altitude
of Float
(gm/cm2 )

2.0
2.2
2.0

1.7
2.5

2.1
2.0

2.8
2.0
1.9
3.4

2.0

Mt. Washington
Neutron Monitor
Counting Rate

2366
2355
2368

2280
2262

2194
2232

2043
2053
2087
2110

2076

Table III-1

List of pertinent balloon flights. The length of the float period
and the altitude are nominal quantities, since the float period was
often divided into smaller segments during which variations in the
altitude were small compared to the variations over the entire float
period. The quoted neutron monitor rate is an average over the entire
float period and was calculated from hourly averages kindly supplied
by Dr. J. A. Lockwood.

Caltech
Flight
Number

66C2P
66C4P
66C5P

67C1P
67C3P

Date
of
Launch

6/27/66
7/11/66
7/15/66

6/17/67
7/2/67

68C1P
68C2P

69C1P
69C2P
69C3P
69C5P

6/24/68
7/5/68

6/15/69
6/18/69
6/21/69
7/1/69

6/22/7070C1P
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B. Satellite Data

The OGO-6 satellite is a polar orbiter which was launched on

5 June 1969 into an orbit with perigee height of 397 km, apogee height

of 1098 km, inclination of 82 degrees,and period of 99.8 minutes (OGO

Bulletin, 1969). The "Caltech Solar and Galactic Cosmic-Ray Experiment"

is mounted so that the telescopes always face radially away from the

Earth. In January of 1970 the mylar window which shielded the range

telescope from sunlight failed and detector D1, at the top of the tele-

scope, was commanded off. In August of 1970 the satellite's tape

recorder failed, essentially terminating the mission.

Figure III-3 is a plot of OGO-6 counting rates of several

different types of events as a function of time during one orbit, with

supplementary orbit data. These plots are routinely generated for all

OGO-6 data and contain curves not of interest here. We are primarily

concerned with the curves labeled D18 (D138), P128 (D1D2D8), D28

(D2D8), D238 (D2D3D8), and ILAT (invariant latitude). These events

represent, respectively, (roughly speaking) protons of 1 - 20 MeV,

protons of 3 - 20 MeV, protons of > 1 MeV + electrons of > .15 MeV,

and protons of > 18 MeV + electrons of 1 MeV. All the data analyzed

to give the spectra presented later in this thesis are taken from

periods when the invariant latitude of the satellite was > 700 and the

aforementioned rate curves indicated that the satellite had left the

trapped-particle zones and was inside the geomagnetic cutoff region

for the low-energy protons (D1D8 events). Data were also excluded if

the eleetron rate (D2D8) was more than about one order of magnitude

higher than "normal" for that day in order to minimize the effect of any
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slight contamination of proton fluxes by electrons.



18

IV. DATA ANALYSIS

We use very similar methods of data analysis for both pce and

OGO-6. In each case we abstract the data and prepare a magnetic tape

which contains the data in a format appropriate to a FORTRAN program.

All further analysis is done using these tapes.

The rate-scaler data are converted to rates in order to make

dead time corrections and are plotted as a function of time to aid in

the process of selecting data for further analysis. The event-type

and pulse-height data are used to identify (at least roughly) the

species and energy of the particle which caused the event. See Table

Al-1. The number of events corresponding to a given species and a

given energy can be used to determine the intensity of particles of

that species and energy.
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A. Calculation of Spectra from Range-Telescope Data

When the data have been selected as described in the previous

chapter, the event-type and pulse-height data are used to assign range

telescope events to various "bins". The number of counts in these

bins is converted to a flux by multiplying by the inverse of a response

matrix which is derived in Appendix 1 from theoretical calculation and

accelerator calibrations.

The particle spectra are derived using the relation:

=-1 (IV-1)

The variables in this equation will be identified and discussed briefly

in this chapter and in more detail in Appendix 1. The vector j has

components jn where jn is the particle intensity in the n'th energy

interval which is centered at E and has a width AE . N has components,n n

Ni,which are the number of counts in the i'th bin in a time 7. T is the

effective time, corrected for dead time and data loss. The response

maxtrix R involves the geometrical factor, G, and the width of the

An event is said to fall into a bin if it meets a set of criteria in-
volving range,as determined by the discriminators of D1-D7, energy loss
in D1, D2, and D3, and energy loss in D4-D7 as determined by the high
discriminators.

+The geometrical factor G is used to normalize the count rate to unit
area and unit solid angle. It is given by

G = ff dA dQ
where dA is an element of detector area, projected in the direction of Q,
and dQ is an element of solid angle. The limits of integration are
determined by the coincidence requirements of the telescope and may be
quite complicated (Sullivan, 1971).
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energy interval, AE. It also takes into account statistical fluctua-

tions in energy loss and nuclear interactions in the absorbers, which

may cause a "false" range measurement.

The off-diagonal elements of R are caused by the energy-loss

fluctuations and nuclear interactions. If these effects were negli-

gible R would be diagonal and the diagonal elements would be given

simply by

Rii ' G i AEi

In this case equation IV-1 would reduce to

Ni
ii Gi AEi T (IV-2)

The evaluation of R including the effects of energy-loss

fluctuations and nuclear interactions is complicated, but the process

has been carefully verified by extensive calibrations. The complexity

is due to the use of all the data available for an event, i.e., high-

resolution measurements of energy loss in D2 and D3 (and D1 for low-

energy events), range, and the high discriminators in D4 - D7. However,

by using all of this information, we are able to reduce the effects of

energy-loss fluctuations and use the energy-loss data to distinguish

interacting particles from particles which stop due to ionization

energy loss. Thus the non-diagonal elements of R are small (a 10% of

the diagonal elements) and, by virtue of our extensive calibrations,

well known.
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B. Calculation of Spectra from derenkov-Telescope Data

The &erenkov-telescope data were assigned to bins on the basis

of light output in D3' and energy loss, as given by the lesser of the

pulse heights from DI' and D2'. The selection of the lesser of Di' and

D2' had the effect of eliminating a large part of the statistical

fluctuations in which the energy loss is much larger than average, thus

improving the resolution. With our resolution, particles of different

Z are clearly distinguished. Electrons and protons are not distinguished,

and about 10% of the Z = 1 events in polar data are due to electrons.

The bins for Z = 1 and Z = 2 particles were determined from flight data

for 1967 and were large enough to contain essentially all of the

appropriate particles.

No attempt was made in this work to unfold a differential

energy spectrum from the eerenkov-telescope response. Integral fluxes

above 400 MeV/nucleon were determined for helium nuclei using the bins

mentioned above. The fact that the integral fluxes measured with the

derenkov telescope agree with those measured with the range telescope

gives additional confirmation to the interaction corrections described

in the preceding section and the appendices.
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C. Corrections to the Proton Spectra for Atmospheric Effects

The flux of atmospheric secondary protons was calculated by a

Monte Carlo program based on the interaction cross-sections given by

Bertini and others (Alsmiller and Barish, 1968; Bertini, 1963; Bertini,

1966; Bertini, 1967; Bertini, 1969; Bertini and Guthrie, 1970) and was

fit to the measured curves of proton intensity versus altitude for 1969,

which included a point at the top of the atmosphere determined from the

OGO-6 data. These calculations are described in more detail in

Appendix 2. The simultaneous measurements, made in 1969 and 1970 in

and above the atmosphere, represent the most extensive measurements of

atmospheric secondaries made to date and enable us to place confidence

in our calculated secondaries for the 1966-1968 data.

The first step in correcting the 1966-1968 proton data for

atmospheric effects was to subtract the calculated intensity of

secondary protons from the measured intensity to get the intensity of

residual primaries at float altitude. These primary intensities were

then multiplied by a factor which took into account attenuation of

primaries by contraction of the energy interval due to energy loss in

the atmosphere and by nuclear interactions in the atmosphere. The

energy intervals given in the following chapter are energies at the

top of the atmosphere.
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D. Corrections to the Spectra of Helium Nuclei for Atmospheric Effects

There are not enough cross-section data available to allow a

meaningful calculation of the production of secondary He nuclei by

cosmic rays in the atmosphere. We do, however, have spectral

measurements made both in and above the atmosphere. We shall present

a simple model which allows us to use these measurements to justify our

treatment of the spectra of He nuclei measured with pae.

The production of secondary He nuclei in the atmosphere may be

analyzed in terms of two distinct but related processes: the fragmenta-

tion of heavy cosmic-ray nuclei (Z > 2) in interactions with air nuclei,

and the release of He nuclei in the breakup of air nuclei in interactions

with cosmic rays (both protons and heavier nuclei).

In either of these processes the He nucleus may be thought of

as existing in the heavier nucleus before the interaction. It is re-

leased or fragmented from this heavier nucleus by the interaction. In

either process it is unlikely that the He nucleus will change its

velocity by a large amount since this would, in most cases, produce a

breakup of the He nucleus itself. In the fragmentation process the He

nucleus will, on the average, be produced with the same vector velocity

as the heavy nucleus which was fragmented. In the release of He nuclei

from the breakup of air nuclei,the He nucleus will tend to have small

velocity or small energy, i.e., the spectrum of these nuclei will fall

rapidly with increasing energy.

If we consider first the fragmentation process, we can say

that the secondary He nuclei have the same velocity as the producing
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nuclei; the interaction lengths of the heavy nuclei are roughly

independent of energy (Noon and Kaplon, 1955; Cleghorn et al., 1968);

and the spectra of the producing nuclei (mostly CNO) are roughly the

same as that of the primary He nuclei (Mason, 1971). Hence, the

spectrum of He nuclei will be unchanged in shape by the fragmentation

process.

The attenuation of He nuclei in the atmosphere is also

roughly independent of energy (Appa Rao et al., 1956; Lohrmann and

Teucher, 1959; Waddington, 1954; Willoughby, 1956), and the effective

interaction length for production of He nuclei (Waddington, 1960) is

roughly equal to the interaction length for attenuation. These two

effects will therefore have equal and opposite effects on the spectrum

and can be ignored. At the pce float altitude (2-3 gm/cm ) this

approximation is quite good compared to the approximately 20%

statistical accuracy of the pce data.

The second process for creation of secondary He nuclei, re-

lease from air nuclei, should, as pointed out earlier, have a steeply

falling energy spectrum. Thus, the corrections for this effect should

be negligible at high energies. In Figure IV-1 we compare He nuclei

spectra measured in 1969 with pce and OGO-6. On the basis of this

comparison (and a similar comparison in 1970) and the preceding

discussior we conclude that the pCe He spectra may be used without

correction for atmospheric secondary production above about 70 MeV/

nucleion. Below this energy the spectra are contaminated by

secondaries and will not be considered further.
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V. SPECTRA AND RATE PLOTS

Since the spectra presented in this chapter will be used to

study long-term time variations of cosmic-ray spectra associated with

the solar modulation process, it is important to separate the effects

of long- and short-term variations. One of the most readily available

tools in the study of cosmic-ray time variations is the neutron monitor.

These ground-based instruments are sensitive to cosmic-ray nuclei of

energy roughly > 1 GeV/nucleon. They are constructed with large geo-

metrical factors (determined by area and solid angle) so that the

normally small time variations at these energies are not obscured by the

presence of statistical fluctuations. Figure V-1 shows the neutron-

monitor counting rate as a function of time for the Deep River neutron

monitor (Steljes, 1965-1970) which is located at a geomagnetic cutoff of

1.0 GV (Stoker and Carmicheal, 1971). The times of the pae balloon

flights are indicated by vertical lines and the periods for which OGO-6

spectra have been calculated are shown by heavy bars. The 11-year solar

cycle is quite obvious in the neutron monitor rates. It is also clear

that the pae and OGO-6 data cover a significant fraction of this cycle.

Short-term solar activity, e.g., solar flares, will be

observable at the high energies typical of neutron monitor sensitivity

only if the activity represents a considerable enhancement over the

normal activity. Strong flares may be associated with Forbush decreases;

orY very rarely, cause increased neutron-monitor counting rates.

To aid in the task of recognizing short-term enhancements of

solar activity we have prepared "monthly summary plots" which include
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several indices of solar activity. These plots are presented in

Figures V-2a through V-2f (Garrard, 1971). Similar plots were prepared

for the summers (balloon season) of 1967 and 1968 (Evans, 1971) using

data from OGO-4.

There is no indication of enhanced solar activity during the

balloon flights made in 1967 and 1968. Fewer data are available for

1966 but the IMP-OGO G.M.-tube counting rates (Balasubrahmanyan and

Venkatesan, 1969) show no evidence of unusual solar activity. Note

that pae, by virtue of being beneath 2-3 gm/cm2 of residual atmosphere,

is not nearly as sensitive as OGO-6 to solar activity, which is

typically strongest at low energies.

For the periods in 1969 and 1970 during which the balloon

flights were made, there is clear evidence of short-term activity. For

this reason,we have also analyzed OGO-6 data from other periods --

periods in which solar activity is lessened. The spectra in Figure V-3

and V-4 for 1969 and 1970 were calculated from these data.

Figures V-3 and V-4 are plots of the spectra measured in the

years 1966 through 1970 on pae and OGO-6. They represent data taken

during what seem to be periods of low solar activity. Tables V-1 and

V-2 are presentations of the same data in tabular form.

The He spectra presented represent only those energy regions

where a clean and unambiguous particle identification can be made, and

where atmospheric secondary contributions are thought to be negligible.

Over the energy range and time span covered by our measurements

some significant discrepancies exist among the spectra of protons and
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He nuclei published by other observers. These differences may result

from genuine time variations, or they may be due to uncertainties in

corrections for instrumental effects or atmospheric secondary contribu-

tions. Our own detector systems have been extensively and fully

calibrated on particle accelerators, and our corrections for atmospheric

secondary contributions (see Chapter IV, sections C and D, and

Appendix 2 ) have been directly verified by measurements made in and

above the atmosphere. The reliability of our (generally small)

corrections justifies confidence in the accuracy of our spectra. Spectra

previously published by other observers will be considered in our

discussion of solar modulation (for purposes of extending coverage, etc.)

if they are in satisfactory agreement with our data. This should

eliminate problems of time variations and minimize differences due to

instrumental effects.
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Helium Nuclei

Intensity

0.14
0.28
0.24
200
239

Flight Number or Days
of Year

1966

± .02
± .03
± .03
± 15
+ 3

66C2P,66C4P,66C5P
i!

i,

Il

1967-68

67C1P,67C3P,68C1P,68C2P
I,

All

II

220-253/1969

I,

o,

of

157-165&171-175/1970

if

of

to

it

of

of

Table V-2

The intensity of He nuclei (in [p/m2 sec sr MeV/nucleon] is given as a
function of energy [in MeV/nucleon] at the top of the atmosphere. The
"Range" notation is explained in Chapter 4 and Appendix 1. The letter
"C" implies that the measurement was made with the 6erenkov telescope.
The balloon flights are described in Table III-1.

Range or
Cerenkov

Energy

R4
R5
R6
R7
C

68-11
166-242
242-321
>321
>400

R4
R5
R6
R7
C

68-111
166-243
243-321

>321
>400

R2
R3
R4
R4
R5
R6
R7
C

+ .01
+ .02
± .02
+ 13
± 2

1969

± .013
+ .008
+ .007
± .009
- .010
± .015
X 10
± 2

5-18.5
32-46.6
46.6-78.6
78.6-112
156-235
235-315

>315
>400

0.13
0.15
0.14
199
180

0.059
0.035
0.044
0.061
0.087
0.089
163
175

0.045
0.030
0.052
0.076
0.106
148
188

R3
R4
R4
R5
R6
R7
C

32-46.6
46.6-78.6
78.6-112
156-235
235-315

>315
>400

1970

+ .014
+ .009
+ .014
+ .015
+ .026
+ 11
± 2
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VI. SOLAR MODULATION

A. Statement of the Problems

The study of the solar modulation of the cosmic-ray intensity

is important because it can furnish evidence on the interstellar spectra

of charged particles an4 also, for the information it provides on the

properties of the interplanetary medium. The physics governing the

propagation of particles through the interplanetary medium is thought

to be well understood. It is discussed in detail in a review paper by

Jokipii (1971) and is very briefly reviewed in section B of this

chapter. The transport equation which describes the motion of cosmic

rays in the solar wind is adequately represented by

V (VU) - VTU)- (RvU) = 0 (VI-1)

where U is the number of particles per unit volume per unit energy with

kinetic energy T (U = 4gj/Pc where j is the intensity and pc is the

particle velocity), V is the solar-wind velocity, a(T) is a parameter

given by
£ .n T W +m

a(T) An T W + (VI-2)

p is the particle momentum, m is the particle rest energy, W the total

energy, and I is the particle diffusion tensor. The three terms in

equation VI-1 represent, respectively, convection, adiabatic decelera-

tion, and diffusion of charged particles in the interplanetary medium.

No general, analytic solutions have been obtained.

A list of outstanding problems which will be discussed in this
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chapter includes:

1) The Diffusion Tensor It is generally accepted that the diffusion

coefficient can be written as a function of particle velocity,

magnetic rigidity, and position, and further, that it should be at

least roughly in agreement with the values computed from measurements

of the power spectra of the fluctuations in the interplanetary

magnetic field observed at a point in space. However, the power-

spectra measurements are far from complete. They have been made only

near Earth and over a limited frequency (frequency is related to

particle rigidity, or momentum per unit charge) interval. The un-

certainties in the measurements and the uncertainties in the

connection between the power spectra and the diffusion coefficient

are large compared to the year-to-year changes in K needed to produce

the measured particle modulation.

2) The Outer Boundary of the Modulating Region The simplest way to

explain the characteristic exponential decay with time of the intensity

of particles from solar flares is to postulate the existence of a

boundary beyond which the diffusionbcoefficient is infinite. This

model of a sharp boundary is clearly an idealization and will be

investigated in the light of its effect on solar modulation.

3) The Flux at the Boundary This flux, jD(T), is the boundary condition

under which the transport equation is to be solved. The high-energy

interstellar cosmic-ray spectra areknown to resemble a power law with

a slope given by

¥ = + d n -2.6 5 .d In T
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The shape of the interstellar spectrum at lower energies is unknown

and is of considerable interest for astrophysics. Some investigators

have argued that the spectrum must be flat at lower energies, but

the evidence is not conclusive and the question is of sufficient

importance that further investigation is clearly warranted.

4) The Analytic Approximations The regions of applicability of various

analytic approximations to the solution of the transport equation

are of considerable practical interest. In particular the "force-

field" approximation has been widely used in the discussion of high-

energy data and several investigators have stated that it seems

useful at energies far lower than one might expect. The "j = AT"

solution seems to agree with the low-energy data but there is a

question of how far it can be extended.

5)· Solar Emission A certain fraction of the spectrum of low-energy

protons near Earth may be of solar origin. The extent to which

solar emission dominates the Spectra of low-energy protons has

been debated in the literature and will be considered further.

In this chapter we will briefly review the analytic approxi-

mations which are most frequently used in explaining the data and we

shall rederive some of the formulae in a form which makes them somewhat

simpler in appearance and, perhaps easier to understand. Then we will

show results based on numerical solutions to the "full" transport

equation and compare these to the analytic approximations. In this

manner, we can study the extent to which the approximations really re-

present valid solutions to the transport equation for various reasonable
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assumptions for the radial and rigidity dependence of the diffusion

coefficient, interstellar spectra, etc. This discussion is intended

to show the properties of the transport equation and we will make

reference to the measured spectra presented in the previous chapter

only to put restrictions on what we call "reasonable" assumptions.

Finally, in the last two sections of this chapter, we will show how

the spectra are related to the values and functional forms of the

parameters and compare our numerical solutions with the measured

spectra.
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B. Background Physics

Our understanding of solar modulation is based on the pioneering

work of Parker (1963) in describing the physics of the interplanetary

medium and the transport of particles in that medium. Parker showed

that the solar corona, at a temperature of -2 x 106 K, is dynamically

unstable and expands outward from the Sun with supersonic velocity.

This "solar wind" is a highly ionized plasma and has been observed with

spacecraft-borne plasma detectors. The fact that it is ionized means

that it is conducting; thus, magnetic field lines from the Sun which pass

through the corona are "frozen-in" and are swept out into interplanetary

space with the solar wind. The radial expansion of the wind, combined

with the rotation of the Sun, fills interplanetary space with a

magnetic field which has, on the average, the shape of an Archimedes'

spiral. Irregular fluctuations are superimposed on the average field.

These fluctuations may be analyzed as magnetohydrodynamic waves which

are being convected outward with the solar wind since the wave velocity

(- 50 km/sec) (Jokipii, 1971) is much less than the wind velocity

(-400 km/sec) (Gosling et al., 1971). Charged particles whose gyroradius

in the interplanetary field is roughly the same as the wavelength of a

fluctuation will undergo resonant scattering. This scattering causes

the particles to execute a random walk through the medium. Under these

circumstances outward convection of the particles with the solar wind

will produce a radial gradient, leading to diffusion in the opposite

direction. Another important effect is the adiabatic deceleration of

particles. That is, since the cosmic rays are contained in the expanding
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solar plasma, they are cooled as it expands. Inclusion of all these

effects leads to the transport equation, VI-1.

Jokipii (1966; 1967; 1968) has derived relations between the

diffusion coefficient, K, and the power spectrum of the interplanetary

magnetic field so that the diffusion coefficient cannot be treated as

a free parameter. Also, the propagation of particles produced in solar

flares is described by a time-dependent transport equation of the same

form as equation VI-1, giving still more information on the parameters.

The long-term variations in the parameters, especially K,

produce a corresponding variation in the cosmic-ray spectrum and are

the source of the 11-year cycle in cosmic-ray intensities which we call

solar modulation.
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C. Review and Restatement of the Analytic Approximations to the
Transport Equation

We shall assume for simplicity that radial symmetry applies and

that the solar wind velocity is independent of radius, r. Then the trans-

port equation, VI-1, becomes

V2 (r
2
U ) 32Vr (c0TU) 12 brr= (rVI-3)2 2V 2 3 2aU

r r

where K is a scalar quantity (the K component of the diffusion tensor
rr

K).

1. The Diffusion-Convection Approximation

If we ignore adiabatic deceleration and the Compton-Getting

effect, we are left with an outward current of particles (or streaming)

due to convection which must be balanced by an inward streaming due to

diffusion:

VU = K

This is the diffusion-convection approximation, which has the solution

K
U(r,T) = U(m,T) exp {- J K dr') (VI-4a)

r

of, if we assume a boundary at distance D, beyond which V/K is zero,

U(r,T) = U(D,T) exp - dr' (VI-4b)

r

= U(D,T) e
'

* (VI-4c)

The quantity 4,
D

*(r,T) = (r',T) ' (VI-5)

r
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will be seen to be the determining parameter in all of the high-energy

approximations and in the numerical solution at high energies (i.e.,

where t is small). We shall refer to it as the modulation parameter or

simply the "modulation." Note that here, and in what follows, we make

the assumption of a boundary at a finite distance D for convenience

only; it is not necessary.

The diffusion coefficient is assumed to have the usual form,

K --
3 

where x is a mean-free path and Bc is particle velocity. If we assume

that x is separable into a function of heliocentric radius, r, and

magnetic rigidity, R, i.e.,

X a g(r) f(R),

so that

K = 3 g(r) f(R), (VI-6)

and if we assume that temporal variations in f(R) are negligible, then

the diffusion-convection model implies that

U(r,T,tl) 1_+ 2

U(r,T,t2) ex p f(R) f(R)

*

The speed of light, c, is taken to be 1 but is sometimes written to
make the dimensional nature of a given quantity more obvious.
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where
D

i (r') = -f(R)* (VI-7)

r

at a time t
i.

We then define

U(r,T,tl) -1+2 12

M12 = n U(r,T,t2) f(R) f(R) (VI-8a)

M12 is the relative modulation function and can be determined from

spectral measurements made near Earth (Ormes and Webber, 1968) which

implies that the shape of f(R) can be determined in the same way. Note

that we may also define an absolute modulation function

U(r,T,tl) 1

M1 = In U(D,T) f(R) (VI-8b)

Hsieh (1970) has shown how possible changes in the shape of f(R) with

time may be taken into account. Note that the function M
1
above relates

the spectrum at Earth to the spectrum at the boundary at a given energy,

T. We shall show later that, at low energies, the spectrum at Earth is

essentially independent of the spectrum at the boundary, so that the

modulation function is not meaningful at these energies.

2. The Power-Series Approximation

Parker (1965) calculated that a low energy particle might lose

almost all of its energy before reaching the Earth; at these energies

diffusion-convection is clearly not a good approximation. Goldstein

et al. (1970b) have also discussed this feature on the basis of

numerical solutions to the transport equation. Experimentally,
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Murray et al. (1971) have noted that a feature of particles emitted

in a solar flare decreased in energy with time. Mason (1972) con-

cluded from the similarity in the shapes of the spectra of Carbon and

Helium nuclei that there must be large energy losses for low-energy

particles traversing the interplanetary medium. Jokipii (1971) has

found a power series solution to the full transport equation, VI-3,

rV
which includes adiabatic deceleration on the assumption that Kr and

the modulation, i, are small. This solution may be written as

U(r,T) = U(D,T) 1 _ 2-ay ] (VI-9)

d.~nj 3cU
where y dnT and j = 4U is the differential particle intensity.

The spectral index, y, is evaluated at the boundary. The parameter a

was defined in equation VI-2. In this limit the radial gradient is

given by

1 BU 1 i 2-ay V
1U au= 1 Kr = 2<xy v (VI-10)

Note that the diffusion-convection equation can be forced to give the

same results if we change the diffusion coefficient by the factor 2-3y

Thus, it is not possible to distinguish the power series solution from

the diffusion-convection solution unless K is known.

3. The Force-Field Approximation

Gleeson and Axford (1968) have found another approximation

which is useful if the amount of modulation (*) is small. They make

use of the quantity S which is the radial streaming (particle current

density per unit energy) and is defined by the relation:
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S = VU -K r 3 aT (aTU) (VI-11)

(Forman, 1970). Equation VI-3 may be rewritten in terms of S as

1 2 v B2

2 yr (r S) 
=

- 3 brbT (aTU) (VI-12)
r

A substitution of equation VI-9 into equation VI-11 will yield S = 0

if we assume that r is small and that y(r) Z y(D), i.e., that the

spectral index is not changed by the modulation. Under these conditions,

VI-11 may be solved as a first order equation for U or j. This method

is known as the force-field approximation. The equation is most easily

solved if we assume that K is separable (equation VI-6). The solution

is

1(rW) (DW+§) JDW) (VI-13)
W2_M2 W 2 22

w -m (W+$) -mm

where W is the total energy of a particle and m is its rest energy. ' may

be thought of as the energy loss in diffusing to a radius r from the

boundary. § may be energy dependent and is determined from the diffusion

coefficient. Jokipii (1971) has shown that this "force-field" solution

is equivalent to the solution VI-9 for small ¶.

4. The j = AT Approximation

Rygg and Earl (1971) have recently suggested an approximate

solution which is useful at low energies where the modulation is large

and the effectsof adiabatic deceleration are dominant. If the diffusion

term (containing K Br) in equation VI-3 is considered to be small

compared to the other terms then we get (Fisk and Axford, 1969)
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V 6 2Uu 2V aV a(r 3 aT (aTU) U O (VI-14)
r

Rygg and Earl (1971) solved this equation under the assumption that a

is constant, i.e., a = 2, by

U(r,T) = T3 /ca- (rT3 /2a)
(VI-15)

= T 1 (rT3/4)

whereaTis an arbitrary function to be determined by the boundary

condition. They suggest as a boundary condition that U(To,r) = constant =

U (To,D) at some boundary energy To (i.e., no modulation for T > To).

Then the solution is

U(r,T) = (T/To)1 /
2
U(To,D)

(VI-16)
or j(r,T) = AT

where A is a constant and non-relativistic kinematics is used.

5. Approximate Solutions of the Transport Equation in Terms of
Phase-Space Density

The preceding discussion was given in terms of particle number

density or intensity and kinetic energy since those quantities are closely

related to the experimentally measured quantities and because the

original papers were written in those terms. In the following section

we shall summarize much of that discussion in terms of the more natural

variables, the phase-space density, F, and the momentum, p. This approach

will allow us to clarify some of the important points in these

derivations.

The phase-space density is the number of particles per unit
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volume (d rd p) in the six-dimensional r,p phase space and is defined

in this work as

F = j/p2 (VI-17)

where j is the intensity.

We shall discuss only the force-field approximation and the

j = AT approximation in this section. The diffusion-convection solution

(equation VI-4) or the power-series solution (equation VI-9) may be

rewritten in terms of phase-space density by simply replacing U by F.

In order to analyze the force-field approximation we must first

consider the streaming, or a related quantity, the anisotropy, in terms

of phase-space density. For cosmic rays, which are almost isotropically

distributed in direction, we may represent the intensity as a function

of direction by

j(e) = j.(l + 6 cos e)

where the e = 0 direction is selected to be in the direction of maximum

intensity. The coefficient 6 is the anisotropy. It is related to the

streaming, S, by (Jokipii, 1971)

3S
cU

(VI-18)
3S 3 S

4i j 4r p2F

In the interplanetary medium there are two effects which give rise to

spatial currents and hence anisotropies; one is the Compton-Getting

effect, which is obtainable from the Lorentz transformation from the
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solar-wind rest frame to the frame of the Sun (or Earth or spacecraft),

and the other is diffusion. Forman (1970) gives the anisotropy due

to the Compton-Getting effect as

8G Arc d in F (VI-19)
CG Pc d In p

Diffusion causes a current

S K
K Kr

or an anisotropy

3 6n U 3 a n U 3
8 KC r tc Br

The total anisotropy can be written as

6 = CG + 6

V .b n F 3K ? In F
VP(C inF + VAnBr )(VI-20)

The total streaming follows from equations VI-18 and VI-20:

V 47t 2 B Ian F 3K 6 In F
S = - - 3 p F+ nF A n p FB (VI-21)

If we make the approximation that S = 0 (:See section VI.C.3) we get

n F 3K a In F
Bn p + 3 1n = 0 (VI-22)B An p V Br

We can solve easily for the gradient at any given position and energy:

1 aF 1 l 1 _a n F V
F Br - j or 3 B In p K

_2-cy v (VI-23)
3 K

(equations VI-17 and VI-2 were used to evaluate a In F/f In p). In this

equation y is evaluated at r rather than at the boundary as in equation

VI-10 and is not known unless the spectrum is known, but the equation is
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still interesting for two particular reasons:

1) The resemblance to equation VI-10, which is based on the power-

series solution,is striking.

2) If F is independent of p it will also be independent of r (in the

force-field approximation). Thus F = constant (or j = AT) is, in a

certain sense, a special case of the force-field approximation.

In order to solve equation VI-22 analytically, we need to

assume thatK is a separable function of radius and rigidity (as before),

K = f (R)g(r) (VI-6)

Then equation VI-22 can be written

f(R) Bp I I r 0 (VI-24)

An equation of this form can be solved in terms of contour lines, along

which F is constant. In this case the equation of the contour lines is

p D

I 'f(R') dp' + g(r') dr' = constant (VI-25)

0 P r

or Q(p) + 6(r) = constant, where

Q(p) = p) dp'

0

and D

4(r) = 3g(r') dr' (VI-26)

r

If we specify the momentum, PD, at which the contour intercepts the

boundary D, then the constant is given by Q(pD) + 6(D) = Q(PD), since

$(D) = 0. If W and WD are the total energies corresponding to p and PD
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then we can define the spectral shift parameter ~ as

~(r,W) - WD - W(r)

=WD - [(P(r))2 + m (VI-27)

where the momentum, p(r), is given by the countour line equation

Q(p(r)) + 6(r) = Q(PD )

or

p(r) = Q [Q(PD) - (r)]

We can reconstruct the example given by Gleeson and Axford (1968) if we

let f(R) = R = p/jZe|. Then

Q(p) = p'('lZel dp

1= dWf ' = -m

m

W(r) = WD - IZel O(r)

= WD - W(r) = -Zel = IZe 3(r') dr'

r

Thus, in this case, the modulation has the same form as if there were a
D

heliocentric electric field given by f 3g(r') dr' as noted by Gleeson

r

and Axford (1968).

There are several problems with the force-field approximation:

1) It ignores adiabatic deceleration. It is based on equation VI-21,
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which we derived from the Compton-Getting effect and diffusion.

2) It requires very small anisotropy, i.e., if we are to set S = 0 in

equation VI-21 or, equivalently, 6 = 0 in equation VI-19, then we

V -3
must have 6 << PC 10 . While the assumption of zero streaming is

consistent with equation VI-10 (the power-series solution), the

region of validity of these approximations is unclear.

3) It is not a unique solution. The j = AT approximation also predicts

zero streaming. We shall present an example of a solution which

gives zero streaming and satisfies the boundary condition at r = D

(which j = AT does not do).

In order to construct this example we must use the transport

equation to rewrite equation VI-21. In equation VI-12 we wrote the

transport equation in terms of S, T, and U. A change of variables to

S, p, and F yields

1 i 2 V 4v 2 3
2 Hi (r S) = _ Vi 3 aa2 (P F) (VI-28)
2Fr ~ C 3 8r p 3

If we substitute for S using equation VI-21 we get

V a 2 2V1 6 3 1 b 2 BF
2 -(rF) - 2 - (p F) _ a(r ) a o
r p r

or

F F 1 (r ) = (VI-29)
r

Note that considerable cancellation takes place between the term due to

the Compton-Getting effect and the adiabatic deceleration term, since

they have the same form in a spherical geometry. It is worthwhile to

emphasize the point that although the Compton-Getting term and the
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adiabatic deceleration term have the same form, they represent different

physical effects. Both terms must be included in a complete solution.

We repeat that equation VI-20 for 6 or equation VI-21 for S contains no

specific reference to adiabatic deceleration; this effect enters through

the quantity F which is correctly determined from the transport equation.

If we perform the divergence operation indicated on the left hand side

of equation VI-28 and use equation VI-18 to relate S and 6, we find

r V (1 p (F))

P

If we now substitute equation VI-20 into the right-hand side of the

above equation and simplify, we get

6 = V 3r Br bF= - c F (F V rF) (VI-30)

(Fisk and Axford, 1969). If we set 8 = 0 in equation VI-30 and integrate

twice we get a solution

F(r,T) = el(p) + e2(p) exp (_ |V dr')

=el(p) + e2()e'

where el(p) and e2 (p) are constants of integration. We see that we have

two unknown constants and only one boundary condition, which is F(r,T) -.

F(D,T) as r - D. As an example, we can use equation VI-10 to determine

the gradient at the boundary. This relation can be used as the second

boundary condition and the solution is then

F(r,T) = F(D,T) (1 + 2-ay(e - 1)). (VI-31)
3

We emphasize that this solution is not being offered as a serious
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"contender" for a useful analytic approximation to the full solution

to the transport equation; it is given as an example that S = 0 is an

insufficient condition to determine the solution to the transport

equation. It is interesting to note the striking similarity to the

power-series solution, equation VI-9.

The reason that the solution VI-31 is different from the force-

field approximation, equation VI-13, is that it includes the effects

of adiabatic deceleration while the force-field solution does not. The

force-field solution is based on the definition of the streaming,

equation VI-11 or the equivalent VI-21, which includes only the Compton-

Getting effect and the diffusive current. The solution VI-31 is based

on VI-30 which includes the adiabatic deceleration term since it was

derived using the full transport equation VI-28. (In fact, since the

Compton-Getting term and the adiabatic deceleration term have the same

form, some cancellation occurs and the terms remaining are those we

would associate with diffusion-convection.)

Now consider the j = AT solution. If, as before, the term

BF
involving K Br is dropped from equation VI-29, then

r -rF _ 3p = 0 (VI-32)

This equation is of the same form as equation VI-24 and similarly has

a solution in terms of contour lines. The equation of the contour

lines is given by d
dr' d p'

r + 2p'/3 = constant

or rp3 /
2

= constant,

i.e., F(rp 3 /
2
) = constant (VI-33)
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The solution is the same as equation VI-16 except that we have not used

the approximation that a is constant. Again, if we impose the boundary

condition that F(r,p
o
) = F(D,Po), i.e., is independent of radius, then

the solution is

F = constant

or

j = A p AT (VI-34)

Note that this solution depends critically on the boundary condition

imposed. If F(r,p
o
) is allowed to depend on r, or if po is allowed to

depend on r, then F(r,p) will not necessarily be constant. Thus, we

cannot argue on this basis that j = AT is a necessary solution for

large modulation.

6. Summary

We have considered the four most commonly used approximations

to the complete solution of the transport equation. Using the phase

space density instead of the number density or intensity as the dependent

variable we have pointed out the strengths and weaknesses of each of

these approximations, in so far as we are able to do so without having

the complete solution for comparison. These strengths and weaknesses

are summarized below:

1) Diffusion-Convection. This model neglects adiabatic deceleration

and also neglects that part of the Compton-Getting term which has the

form 3 T (aTU). It is not a good approximation at any energy but

can be made to agree with the improved approximations 2) and 3) by

adjusting the diffusion coefficient.
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2) Force-Field Approximation. This model includes the full Compton-

Getting effect but still neglects adiabatic deceleration. It, also,

can be fit to the observational data at some energies and radii

where it is no longer a valid approximation to the solution to

the transport equation by adjusting the diffusion coefficient.

3) Power Series Solution. Here adiabatic deceleration is included but

the assumption of small rV/K and small modulation limits its

applicability to high energies.

4) j = AT. This model applies in the opposite limit, that of large

modulation. One must assume B Fr is small; also, and with less

justification, one must impose the somewhat artificial boundary

condition that F(r,po) = constant.
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D. Numerical Solution of the Transport Equations

A numerical calculation of the solution to the "full transport

equation," equation VI-3, has several advantages over the approximate

solutions discussed in the preceding section. In particular, a numerical

solution can be calculated which is valid for all values of energy and

radius of interest, if the necessary parameters (diffusion coefficient

as function of rigidity and radius, interstellar spectra, etc) are

given; indeed, one may use the numerical solution to test the validity

or relevance of an analytic approximation under a given set of

circumstances. Furthermore, numerical solutions can easily be calculated

on a computer for a variety of different functional dependences of

\(R,r);whereas a new analytic solution would presumably be necessary

for each different k(R,r).

In order to get solutions valid for a larger range of parameters

and to investigate the dependence of the solution on the parameters, we

have calculated a number of numerical solutions to equation VI-3, the

"full transport equation." This has been done using the Crank-Nicholson

implicit finite-difference technique as suggested by Fisk (1968, 1971).

The transport equation is replaced by a finite-difference equation and,

given the boundary conditions at some large energy, Tb, at r = D, and

at r = 0, we can calculate the solution at all points r and T inside

the boundaries. The boundary conditions are unknown, indeed, some of

them contain significant physical information. They are treated in the

following manner:

1) T = Tb. We can pick some T
b
which is large enough that the modula-
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tion is small, hence U(r,Tb) = U(D,Tb) for all r.

2) r = 0. We transform the equation so that the dependent variable is

Fr U which we require to be zero at r = 0 in order to eliminate

source-like solutions (Fisk, 1971). The necessity of factoring out

the JF dependence means that the solutions are not valid for small

r (- 0.2 A.U. typically).

3) r = D. The spectrum in interstellar space is unknown, and is one

of the quantities which we hope to investigate. Various assumptions

are made and the resulting spectra at Earth are compared with the

measurements.
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E. Discussion of Properties of the Numerical Solution: Comparison

with Analytic Approximations

Figure VI-1 shows a typical numerical solution to the transport

equation compared to the measured proton spectrum near Earth for the

year 1968. The upper curve is the input spectrum, i.e., the assumed

interstellar proton spectrum which is used in the numerical solution

as a boundary condition. The lower curve is the calculated spectrum

at Earth and the points indicate the measurements. Except at the lowest

energies the agreement is quite good. We shall argue later that the

discrepancy at low energies indicates the existence of quiet-time solar

emission. At this point we wish Qnly to claim that the good agreement

over the relevant range of energies indicates that the parameters used

are not unreasonable. We will investigate the properties of the

numerical solution to the transport equation using parameters at least

roughly the same as those used in Figure VI-1.

1) Diffusion coefficient. We expect the energy dependence to be roughly

that given by Jokipii and Coleman (1968) or Lupton (1971). Thus

·K a B R > Ro (VI-35)
R2 R<R

where R is magnetic rigidity and v1 1 to-2, V 2 ° 0 to 0.5 and

R - 1000 MV. The radial dependence is even more uncertain and we
o

have considered, among others, the four shapes shown in Figure VI-2.

The results of Jokipii and Coleman (1968) indicate that, within the

precision of their measurements, the radial dependence of K is not

pronounced between 1.0 and 1.5 A.U. The results of Lupton (1971)

imply that the diffusion coefficient does not decrease inside 1 A.U.
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On the basis of recent results, Sari (1972) claims that the

-2.7
diffusion coefficient varies roughly as r between 1.0 A.U. and

0.8 A.U.

2) Boundary. The boundary distance was generally taken to be only a

few A.U. (-3 A.U.) on the basis of solar particle studies but more

distant boundaries were also considered.

3) Interstellar Spectra. In this section most of the calculations

-2.65'
assume a total-energy power-law spectrum at the boundary, jD a W

In the next section we find that the interstellar spectrum jD a

(W-0.25m) 
6 5 yields better fits to the observational data. The

slight difference in these two input spectra does not affect the

results reported here.

We have, of course, also investigated the behavior of the numerical

solution in cases where the parameters were varied significantly from

these, but these parameters seem to provide a reasonable "point of

departure."

Figure VI-3 is identical to Figure VI-1 except that the ordinate

is now phase-space density instead of intensity. The phase-space

density is important for the reasons discussed in the previous paragraphs,

i.e., it seems to be a "natural" variable. Since both the force-field

solution and the j = AT solution are expressed in terms of contour lines

and since it is of interest to study the solution at all radii, not

merely at 1 A.U., we have generated contour plots of the solution.

Figure VI-4 serves as an introduction to these contour plots.

Figure VI-4a is a plot of the phase-space density, F(r,T), as a function
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of kinetic energy, T, at a fixed radius of 1 A.U. Figure VI-4b is a

plot of F(r,T) versus radius at a fixed energy of 50 MeV. Figure VI-4c

is a perspective plot of F(r,T) versus r and T. The two heavy lines

indicate the radial and energy cross-sections which are shown in the

upper plots. Contours of constant phase-space density may be drawn on

the surface illustrated and projected onto the radius-energy plane.

Figure 5 shows four such contour plots. Each contour line represents

a constant change in the logarithm of F or, equivalently, a change in

F by a constant factor (of 1.5). A kinetic-energy power law would

show up as equal line spacing. A region where F is roughly constant will

show up as a low density of lines.

Such a feature is displayed fairly strongly in Figure VI-5a

less strongly in Figure VI-5b. The difference between these plots is in

the radial dependence of K -- Figure VI-5a is based on a diffusion

coefficient which is independent of radius; Figure VI-5b is based on

a diffusion coefficient proportional to (2 + r3)/3. (This form was

selected to yield a diffusion coefficient which is only slightly

dependent on radius for r - 2 A.U., but strongly dependent on r for large

r,providing a gradual transition to the interstellar medium.) The

difference in the importance of the j = AT component in the two

solutions is clearly visible. We remind the reader that the derivation

of constant phase-space density given by Rygg and Earl depended

critically on the assumption that there existed an energy, To, (see

equations VI-15 and VI-16) at which the solution was allowed to change

character, i.e., an energy boundary. The difference between the solutions
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in the large-modulation region in Figures VI-5a and b may be attributed

to the difference in the energy boundary. Now, clearly, we do not wish

to argue that some such sharp boundary really exists, however, it would

appear that in both Figure VI-5a and Figure VI-5b there is a

transition between a small-modulation region in which the contours are

predominantly horizontal and presumably are reasonably well described

by the force field approximation, and a large-modulation region in which

the lines tend to be vertical and spread out. In Figure VI-5a this

transition takes place along a boundary which is roughly horizontal,

hence we expect j = AT to be important. In Figure VI-5b the transition

boundary is definitely not horizontal so that it does not satisfy the

requirements of the derivation, and consequently it shows less of the

j = AT component.

The question immediately arises - what characterizes the boundary?

At what point do the small-modulation approximations cease to be useful

and the large-modulation approximation become a better fit? We

considered the following parameters as indicators for the applicability

of a particular approximation.
D

1) I = / Vdr'

r

2) §-T, where ~ is the spectral shift parameter specified by equation VI-27

3) rV/K

4) K

The last two of these can be eliminated fairly easily by inspection of

Figure VI-5a. Consider first contours of constant K . The diffusion

coefficient is independent of radius, hence a contour line of constant
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K would be a straight line at a constant energy. Since the "boundary"

of the large-modulation region tilts somewhat downwards (i.e., to

smaller energies) as r increases and the contour line of K does not, we

conclude that contour lines of K do not describe the boundary. This

conclusion is supported by studies of large numbers of contour plots of

this sort, with varying magnitudes of the diffusion coefficient. The

diffusion coefficient, K, is a monotonically increasing function of

energy, thus contour lines of rV/K would tilt upwards (toward larger

energies) with increasing r(rV/K constant while r increases implies K

increases, which implies T increases). Thus lines of constant rV/K

also do not describe the boundary of the large-modulation region. Both

K and Q - T have contour lines of roughly the appropriate shape to

describe the boundary, but contours of 4 fit somewhat better. The

dotted lines in Figures VI-5a and VI-5b are lines of constant 4, 4 = 2.5.

Figures VI-5c and VI-5d show two further examples of contour

plots, plots in which the radial dependence of the diffusion coefficient

is changed substantially inside 1 A.U. It is seen that in Figure VI-5d

where the diffusion coefficient is small near the Sun there is essentially

no region of constant phase-space density, F, while in Figure VI-5c

where the diffusion coefficient is very large near the sun, there is a

large region of constant F. The explanation given for the differences

in Figures VI-5a and VI-5b also applies here and the 4 = 2.5 line is

also indicated on Figures VI-5c and VI-5d. A somewhat simpler, graphical

explanation suggests itself in these extreme cases, however. Consider

a contour line which originates at high energies at the boundary, D.
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Inside 1 A.U., where the diffusion coefficient is very small, such a

line will curve towards lower energies. That is, the small diffusion

coefficient implies a large gradient, which, in turn, implies closely

spaced, more-or-less vertical, contour lines. As these lines enter the

low-energy region where the diffusion coefficient is still smaller they

approach the rp3 /2 shape which is implied by a balance of convection

and adiabatic deceleration with no diffusion (See equations VI-32 and

VI-33.). Thus these lines recross the r = 1 A.U. cut at low energies,

implying a lower phase-space density. In the other extreme, shown in

Figure VI-5c, where the diffusion coefficient is very large near the

Sun, the lines which cross the r = 1 A.U. cut at high energies do not

curve towards low energies since the very large diffusion coefficient

implies a small gradient and roughly horizontal contour lines. Since

the lines which originate at the boundary at low energies never reach

1 A.U. and the lines which originate at the boundary at high energies

are not turned down into the low-energy region, there is a large region

with few contour lines, i.e., a large region of F R constant.

On the basis of these results and other similar results too

voluminous to present here we would suggest the following scheme for

understanding the behavior of the solutions to the transport equation.

1) For small 4, i.e., 4 ~ 0.1 the force-field model or the power-series

solution give a good fit to the numerical calculation. In this

region these solutions have the same form as the numerical solution,

and they predict an intensity which is close to that predicted by

the numerical solution.
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2) For 2.5 - 0.1 the force-field solution and the numerical solution

still have the same form but the differences in the predicted values

of the intensity at a specified point becomes more and more

significant.

3) For * > 2.5 the force-field solution no longer has any similarity to

the numerical solution, rather, one is now in a region where the

solution depends critically on the radial dependence of the diffusion

coefficient and is insensitive to the integral parameter, *, in that

3/2
region. The contour lines should approach a shape of rp = constant

and if the radial dependence of * is weak then the spectrum will have

the j = AT shape.

Note the perhaps surprising tendency of the force-field

solution to merge quickly and smoothly into the j * AT solution,

expecially in the case represented by Figure VI-5b. We recall to the

reader the discussion following equation VI-28 in which we pointed out

that if a = 2 and y = +1 then the force-field approximation predicts

BF
-= 0. Thus, F = constant is, in a sense, the limiting case of the

force-field solution for large modulation. One must be careful not to

attach too much weight to this limit since the force field solution is

not valid for large I, but it does present a reasonably consistent

picture.

Similar results were reported by other investigators at the spring
meetings of the AGU and the APS (Fisk et al., 1972; Forman et al., 1972).
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F. Discussion of Properties of the Numerical Solution: Determination
of the Parameters

Given only a series of spectra of protons and He nuclei, such

as we have measured, it is not possible to precisely determine the

parameters, K and JD' of the transport equation. We find that, over a

large range of variation in the parameters, the spectrum near Earth at

high energies is determined fairly well by jD and the modulation para-

meter, 4. One can, of course, construct any number of different models

for K (r,T) which yield the same 4. Changes in jD can be compensated by

changes in 4, again over a large range of parameters.

Figure VI-6 illustrates, for example, that the high energy

spectra are determined by the parameter 4. The spectrum at Earth has

been calculated for the indicated interstellar spectrum and for six

values of boundary distance, D, ranging from 2.7 A~4. to 35 A.U. A

simple model with K independent of radius has been used. The energy

dependence of K is the same in each case and the magnitude of K was

adjusted so that 4 is the same at 1 A.U.

The lack of change in the high energy part of the spectrum may

be understood in terms of small modulation approximations. Both

diffusion-convection and the power-series solution depend on the

diffusion coefficient only through 4, which is held constant at Earth;

the force-field solution is determined by the related quantity 6, which

is also constant.(These quantities are defined in equations VI-5 (4)

and VI-30 (i).)

It is interesting to note that the intensity at low energies

increases as the distance to the boundary increases, i.e., the nearer
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the boundary is, the fewer low-energy particles are observed at 1 A.U..

The low-energy portion of the spectrum is steeper than j = AT for small

boundary distances and approaches a limit of j = AT as the boundary

distance is increased. The behaviour at low energies may be interpreted

graphically in terms of the contour plots. The condition for j = AT is

that the "box" roughly formed by the contour lines *(r,T) = 2.5 have an

upper boundary which is horizontal. For a diffusion coefficient which is

independent of radius,

V(D-r)
K(T)

For r - 1 A.U., the term (D-r) is almost independent of r if D is large.

Thus, the slope of the top of the box near 1 A.U. is smaller for large

boundary distance, D.

Figure VI-7 shows calculated spectra at Earth for two

characteristic input spectra, one proportional to TY and the other

proportional to W', with y = -2.65. It would be very difficult to

choose between these calculated spectra on the basis of the measured

spectra.

An even more serious problem in trying to use the spectra at

Earth to determine interstellar spectra is the fact which may be loosely

expressed by saying that particles which are incident upon the boundary

with low energies have very small probabilities of reaching the Earth

(Gleeson and Urch, 1971; Urch and Gleeson, 1972). This feature can also

be expressed by saying that in the limit of large modulation (* > 2.5)

the spectrum will be roughly given by j = AT and is independent of the

low-energy part of the input spectrum. The low-energy portions of
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either of the input spectra in Figure VI-7 may be changed by several

orders of magnitude without affecting the spectra at Earth. This result

is indicated schematically for the total-energy power-law spectrum by

the shaded area. Any input spectrum in the shaded region would give

roughly the same spectrum at Earth. A corollary of this argument is

the conclusion that the calculated spectrum of galactic particles near

Earth does not turn up in the region of large i. If * is large then

the turnup in the low-energy portion of the measured proton spectrum

must be attributed to solar emission. The only way to reproduce the

measured turnup is to increase K by more than an order of magnitude at

low energies, thus making K a R (roughly) at low energies. The

studies of solar-flare particle propagation and of the magnetic-field

power spectra contradict such an assumption.

It is clear that more information than just the spectra of

protons and He nuclei is necessary if we are to narrow the range of the

parameters jD(T) or K(r,T). Some of the more obvious measurements that

are (or would be) useful are:

1) radial intensity gradients

2) directional anisotropies

3) detailed spatial and temporal behaviour of solar flare particles

4) diffusion coefficients

5) electron and positron spectra.

1. The Radial Gradient

Radial gradients have been determined by several investigators

(O'Gallagher, 1967; Anderson, 1968; Krimigis and Venkatesan, 1969;
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Lezniak and Webber, 1970; Bercovitch, 1971; Formal et al., 1971; Fireman

and Spannegel, 1971), but it is very difficult to deduce an accurate

gradient from the measurements. The inconsistencies in the gradients

given by these investigators are large, even compared to the large error

bars quoted. We make no attempt to judge these results, but we show

examples of the gradients predicted for several characteristic sets of

parameters in Figure VI-8. The calculated gradient is plotted as a

function of radius for two energies, 25 MeV and 500 MeV, for the simple

case where K is independent of radius. Note that in all cases the

gradient at low energies is a strong function of radius, being large

at the boundary and becoming small at smaller radii where the j = AT

approximation is better. The gradient at high energies is almost

independent of radius (for & independent of radius) and serves as a good

indicator for the value of K.

2. The Anisotropy

In Figure VI-9 we show radial anisotropies calculated from the

numerical solution to the (spherically symmetric approximation to the)

transport equation. Plotted are contours of constant anisotropy for K

independent of radius. The anisotropies are small at large energies as

predicted by the power-series solution and as assumed by the force-field

solution. In the large-* region the anisotropies are again small as

one would expect from F = constant. The anisotropy is somewhat larger

in the small-T, large-r region where neither j = AT nor the force-field

approximation is valid. The anisotropies calculated using the spherically

symmetric model adopted in this work cannot be compared with the diurnal
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anisotropies measured with neutron monitors (Jokipii, 1971) since those

are thought to arise from the off-diagonal terms in the diffusion

coefficient. Rao et al. (1967) have reported small anisotropies in

the direction away from the sun at low energies. Since we predict

anisotropies in the solar direction for galactic particles (i.e., an

excess flow toward the Sun), we conclude, as did Rao et al., that these

measurements indicate the existence of solar emission.

3. Propagation of Solar Flare Particles

Particles from solar flares propagate outwards through the inter-

planetary medium and are subject to the same forces as are galactic

cosmic rays propagating inward from the boundary. Lupton (1971) has

provided the most complete analysis to date of these phenomena. He

concludes the propagation of solar flares is quantitatively well

described by the time-dependent transport equation if the diffusion

coefficient is similar in form and magnitude to that of Jokipii and

Coleman (1968). He used boundary distances in the range, -2.5 to

-5 A.U. If we assume that the boundary is as close at 5 A.U. and use

the diffusion coefficients of Jokipii and Coleman, we can fit the

measured proton spectra only by using an input spectrum of lower

intensity than the total-energy power law plotted in Figure VI-7. On

the other hand, the large amount of relative modulation (a factor of

-5 from 1965 to 1969 for 250 MeV protons) is inconsistent with the

observations that the diffusion coefficient does not change significantly

if the absolute modulation is small. (See, for instance, the results of

McCracken and Rao (1970). See also Mathews et al. (1971).) That is,

the large diffusion coefficients and small boundary distances used by
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Lupton (1971) imply small * and hence small absolute modulation, which

is inconsistent with the large changes in * needed (if * is small) to

reproduce the large changes in the measured proton spectrum. However,

the work of Lupton and recent investigations of solar particle events

performed in this laboratory have disclosed events in which the

equilibrium decay time of solar flares is much longer than the decay

time observed during the first few days. The possibility exists that

the decay times of solar particle fluxes are consistent with larger

boundary distances (> 5 A.U.) with the same diffusion coefficients

previously used with a boundary distance of 2.7 A.U. In this case the

solar particle data may be consistent with large absolute modulation

of galactic cosmic rays.

4. Diffusion Coefficients

The power spectra of the interplanetary field, and hence the

diffusion coefficient, have been measured (Coleman, 1966; Siscoe et al.,

1968; Sari and Ness, 1969; Bercovitch, 1971; Mathews et al., 1971) near

Earth. These diffusion coefficients also do not appear to change by

large amounts. In order to match the spectra at Earth with these

diffusion coefficients, we must assume either an input spectrum with

intensities less than those shown in Figure VI-1 or a large boundary

distance (with K independent of r). Again, the relatively small

variations in K and the large changes in the modulation imply that the

absolute modulation is large.

5. Electron and Positron Spectra

The electron and positron spectra are modulated in a fashion
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similar to that of the heavier particles. Since they have relativistic

velocities there are some differences:

a) K is an increasing function of velocity and rigidity (recall

equation VI-35 ). Thus, the electrons will have a larger

diffusion coefficient at the same energy than protons.

b) The parameter a is essentially always 1 for electrons. Thus,

adiabatic deceleration (see equation VI-3 ) is less important

than for protons.

For these reasons, the electron spectra are less sensitive to the radial

dependence of the diffusion coefficient and, hence, serve as more

sensitive indicators to the value of * than the low-energy protons, for

which the spectrum is roughly j = AT and is insensitive to 4.

In contrast to the protons and alpha particles, the interstellar

spectrum of electrons and positrons can be at least crudely deduced

from measurements made at Earth -- electrons from non-thermal galactic

radio spectra, and positrons from calculations of their production and

storage in the interstellar medium. Given these interstellar spectra,

the spectra measured at Earth can be used to determine *(1 A.U., T).

This value of * is also applicable to protons and alpha particles

(Goldstein et al., 1970a) and allows us to deduce the interstellar

spectra of these nuclei (with the restriction that the low-energy

portion of the spectrum is still not determined).
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G. Comparison of Measured and Calculated Spectra

The test of any physical model is, of course, a quantitative

comparison of its predictions with measurements; such comparisons are

made in this section. In order to predict the spectra of galactic

protons and He nuclei at Earth we need the parameters K(r,T), their

diffusion coefficient, and jD(T), their spectra in the interstellar

medium.

We have determined the parameter K in the following manner:

1) From electron data a value of the integral modulation parameter,
D

*(1 A.U., T) = f Vdr'

1

may be determined. This method is used because, in the energy

range covered by our measurements, the proton spectrum is less

sensitive to the value of * than the electron spectrum.

2) We make the simplifying, and not unreasonable, assumption that the

diffusion coefficient is independent of heliocentric radius, r,

for r < D. This allows us to represent the radial dependence of the

diffusion coefficient by the single parameter D, the boundary

distance. In this case K is related to * by

(T) - V(D-1)
K(T) = *(1 A.U.,T)

Studies of the propagation of solar-flare protons presently suggest

an effective boundary distance within the range from -2.5 A.U. to

-6 A.U. Two characteristic values of the boundary distance, i.e.,

2.7 A.U. and 6.1 A.U., which roughly bracket this range, were used

for most of the calculations reported in this section. The effects
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of boundary position on the spectrum were discussed in the preceding

section.

The diffusion coefficient can be described by the parameters I, k0, Ro,

and D. (Recall equations VI-35 and VI-7.)

K = ko0 f(R)

R R 0

= k0 o { ]R
R

ROR R < R
0

Tf (1 A.U.) = V(D-1)
k
0

All calculations presented in this work assume a constant solar-wind

velocity of

V = 2.67 x 10' 6 A.U./sec

= 400 km/sec.

The transport equation (see equation VI-29, for instance) and the

modulation parameter, 4, depend only on the ratio K/V. Thus, no

generality is lost by assuming a particular value for V. A list of

the values of the parameters, I, k0 , Ro, and D which were used to

calculate the spectra presented in this section is given in Table VI-1.

These values will be compared with results based on power spectra of

the interplanetary magnetic field.

The determination of the parameter * (or f and R0) was made by

Cummings (1972) in this laboratory. He has performed a careful re-analysis

of the non-thermal galactic radio spectrum to determine the inter-

stellar electron spectrum. Using the interstellar electron spectrum

derived in this manner, the measured electron spectra at Earth, and
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numerical solutions to the transport equation, he determined *(1 A.U., T)

for the periods 1965-66 (averaged), June-October 1968, June-July 1969,

and June-July 1970. These values correspond to the entries numbered 2,

4, 5 and 8 (respectively) in Table VI-1. They are preliminary at this

time. There are naturally uncertainties in * associated with the

uncertainties in the measured and interstellar spectra of electrons. A

more complete discussion will appear in his thesis.

The entries in Table VI-1 for other epochs were obtained by

making small changes in Cummings' values, which yield improved fits to

the data. These changes are consistent with the expected temporal

behaviour of the modulation, as explained below.

The interstellar spectra of protons and He nuclei were determined

as follows:

1) The interstellar spectra of both protons and alpha particles are

assumed to be of the form

DA useful (Wfeature of this form is that a power-law spectrum in totalm)

A useful feature of this form is that a power-law spectrum in total

energy may be represented by p = 0 and a power law in kinetic energy

by p = 1. The assumption that the interstellar spectra of both

protons and He nuclei are of the same form is made for simplicity.

We also assume, with reasonable confidence, that the interstellar

spectra are independent of time. The exponent in the above

equation is derived from the spectra of nuclei at high energies

where the effects of solar modulation are negligible.

2) A value of p is determined by calculating the spectrum of protons at

Earth, using K determined for 1968 as described above, and comparing
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k'
Entry 0
Number (MV) (xlO 

9
)

k'

(xlO 1017)
R0

(MV)

D
(A.U.) Epoch and Figure Reference

1194 3.80
o" 11.40

8.55
25.66

500 2.7
t" 6.1

1965 Figure VI-13

1375 3.30
f" 9.90

7.43
22.28

900 2.7 1965-66 Figures VI-lla & b
f" 6.1 & Figures VI-12a & b

1746 2.60
t" 7.80

5.85
17.55

750 2.7
t" 6.1

1967 Figures VI-14

1948 2.33
t" 6.99

5.24
15.73

750 2.7 1968 Figures VI-llc & d
t" 6.1 & Figure 12c

2855 1.59
i" 4.77

3.58
10.74

1500 2.7
t" 6.1

1969 Figure VI-lle &
Figure VI-12d

3067 7.40 16.65 1300 9.5
3174 7.15 16.09 1200 9.5

3289 1.38
1" 4.14

3.11
9.32

1969 Figure VI-15

1100 2.7 1970 Figure VI-llf &
t" 6.1 Figure VI-12e

Table VI-1

Parameters used to define * and K for the calculated spectra
section. The various parameters are described in the text.
column is used to specify K in units of [A.U.2/sec] , the k;
is used for [cm2/sec] .

in this
The k

0

column

la
lb

2a
2b

3a
3b

4a
4b

5a
5b

6
7

8a
8b
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the calculated spectrum at Earth with the measured proton spectrum.

We find a best fit value for p of 0.25 4 0.2. The uncertainty in p

is due to the uncertainty in the value of * determined from the

measured electron spectra, assuming the median value for the inter-

stellar electron spectrum which gives the best fit to the radio

data. The reader is again cautioned that the low-energy portions of

the interstellar spectra of protons and He nuclei cannot be determined

from the spectra at Earth since the calculated spectrum is insensitive

to the interstellar spectrum in the region where ~ > 2.5. (Examples

of contour lines in the r - T plane along which i = 2.5 are given by

the dashed lines in Figure VI-5.)

We calculate the spectra of protons and He nuclei near Earth

for the four epochs listed above, using the values of K and jD determined

as described. These calculated spectra are shown in Figure VI-10. The

solid curves correspond to a boundary distance of 2.7 A.U. and the dashed

curves, to 6.1 A.U.

In Figures VI-11 and VI-12 we compare the most appropriate

(i.e., nearest in time) of these calculated spectra with the measured

spectra for 1965 through 1970. We emphasize that the calculated spectra

are not best fit curves, they are predictions based on the electron data.

In general the agreement between the calculated and measured spectra at

Earth is satisfactory for protons for the years 1965 through 1968 and

for He nuclei for the years 1965 through 1970. There is typically a

turnup or flattening in the measured spectra of both protons and He

nuclei at low energies, i.e., below about 10 to 50 MeV/nucleon. This
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feature cannot be duplicated without drastic changes in the diffusion

coefficient. (See section VI.F.) We attribute the turnup to solar

emission and will discuss it in more detail below.

We note another general feature of these comparisons, i.e.,

that the measured integral intensities of protons above 315 MeV show a

relative modulation from early in the solar cycle to late in the solar

cycle which is smaller than that predicted by the calculation. The

integral fluxes are compared in Table VI-2. This relatively smaller

amount of modulation implies that, at some high rigidity, K increases

more rapidly with rigidity than we have assumed. We are unable to make

a more quantitative statement because of the lack of detailed high-

energy data.

We consider the spectra in Figures VI-ll and VI-12 in detail:

1965: The predicted spectrum of alpha particles is slightly below the

measured data points in the region below about 200-300 MeV/nucleon,

but the shape is similar. The proton spectrum agrees fairly well with

the calculated curve for D = 2.7 A.U. Since the value of * is for 1965-

1966 and since there is considerable latitude in the high-energy proton

data, the diffusion coefficient might be larger in 1965 than the value

we have used. In Figure VI-13 we show an improved fit which is obtained

by making small changes in *. We feel that this change is a quite

reasonable extrapolation of the temporal behaviour of I. (See entry

number 1 in Table VI-1.) The data presented in Figure VI-13 were obtained

from a wide variety of detector systems. In view of the possibly large

intercalibration problems, the fit may be regarded as adequate.
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JM sec sr)

(p/m
2

sec sr)

2597 - 51

2069 : 51

1794 · 53

1399 : 27
tI

1419 · 42

JC

(p/m
2

sec sr)

2511

2061

1865

1282
1131
1084

1078

Ratio

JM/JC

1.03 + .02

1.00 + .02

0.96 : .03

1.09 + .02
1.24 + .02
1.29 + .02

1.32 + .04

Table VI-2

The "Model" column refers to the model for the diffusion coefficient
used in the calculation, as tabulated in Table VI-l. JM is the measured
integral intensity and JC is the calculated integral intensity.

Model Year

2a 1966

3a 1967

4a 1968

5a
6
7

1969
tI

8a 1970
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1966: The fit is satisfactory for both protons and He nuclei but the

data cover only a small energy range. The measured spectra seem to

imply that a boundary distance of 6.1 A.U. is more appropriate than

2.7 A.U., but one must use considerable caution in making such statements

since there is quite possibly a substantial solar-emission component to

the spectrum at energies up to 50 MeV and since there may well be an

intercalibration problem between the different detector systems used.

This caution naturally applies to other years as well.

1967: The measured proton spectrum is slightly higher than the

calculated curve for 1968, as one would expect. The shape is similar

to that of the 1968 curve but the size of the error bars does not allow

a choice between the D = 2.7 A.U. and D = 6.1 A.U. curves. In Figure

VI-14 we show a fit to the same data with a value of ~ slightly smaller

than the 1968 value (entry number 3 in Table VI-1).

1968p and 1967-68a: The fit is quite good for both protons and He

nuclei, but the statistics of the data are not good enough to allow a

choice between the different boundary distances used.

1969: The fit to the measured spectrum of He nuclei in Figure VI-lld

is good, but the statistics and the possibility of solar emission do

not allow a choice between the two boundary distances considered. We

show the low-energy portion of the spectrum of He nuclei given by

Mason (1972) . For the protons, the agreement between the measured and

The high-energy portion of that spectrum has not been included from the
plot because it is in conflict with our measured integral intensity above
315 MeV/nucleon. We find an integral intensity (see Table V-2) which is
about 40% larger than that implied by his differential intensity curve
and which is in much better agreement with the calculated spectrum.



75

calculated spectra is not good and will be discussed further.

1970: The calculated spectrum of alpha particles is slightly lower

than the measurements but not outside the error bars. The low-energy

portion of the measured proton spectrum shows a considerable enhancement

over previous years which we attribute to solar emission. The spectrum

is also much flatter at high energies than one would expect from the

calculation, as is the 1969 spectrum.

As mentioned earlier the measured spectra show a turnup at low

energies which can be reproduced by the calculation only if we increase

the diffusion coefficient at low energies by more than an order of

magnitude. The diffusion coefficient would then be a decreasing function

of energy (roughly given by K C R ) at these energies, in complete

contradiction to the results discussed in sections VI.F.3 and VI.F.4. We

find it preferable to attribute this feature to quiet-time solar emission

of energetic particles. The fact that the measured proton spectra for

1969 and 1970 as presented in Figures VI-lle and VI-llf are flatter than

the calculated spectra, flatter than the spectra from earlier years,

and flatter than the spectra of He nuclei might be explained by solar

emission of protons at energies as high as 50 - 100 MeV. One would ex-

pect solar emission to become a more important component of the spectrum

at solar maximum when the intensity of galactic particles is highly

depressed and when solar emission might well be enhanced.

The difference between the calculated and measured spectra should

give the spectrum of these quiet-time solar particles. The statistical

accuracy of our 1969 data is much better than that of the 1970 data

and will be used to study this point. Such a subtraction procedure is
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clearly subject to the criticism that the calculated spectrum shown in

Figure VI-ll does not fit well at high energies. A better fit to the

measured spectrum can be achieved by increasing the modulation

parameter * slightly (7% compared to the 13% difference between the

values determined from the electron spectra for 1969 and 1970) at all

energies and assuming a boundary distance of 9.5 A.U. The change in X

is important to fit the calculation to the measurements at high energies.

The change in the boundary distance causes a slight flattening of the

spectrum which improves the agreement between the measured and calculated

spectra. The change in X can be justified as being due to a slight

increase in the modulation from the late June - early July period, when

the electron spectra were measured, to the August-September period, when

the proton spectrum presented here was measured. Our observations over

that period show a decrease of 10-20% (*10%) in the proton intensity in

our highest energy bin (235-315 MeV) which is consistent with an increase

in * over that determined from the electron data. (We did not present

the late June - early July proton observations in this thesis because

they show clear signs of short-term activity associated with the June 7

flare at energies up to 100 MeV.) In Figure VI-15 we show the measured

proton spectrum with the calculated spectrum for the adjusted * and

with a boundary at 9.5 A.U. (We also present, for comparison, the cal-

culated spectrum for a 10% change in *, with D = 9.5 A.U.) The fit is

clearly much better but the measured spectrum is still somewhat flatter

than the calculated spectrum. (The fit to the spectrum of He nuclei

with these parameters is changed, but still acceptable. Since the alpha

particles have higher rigidity at the same energy per nucleon they are
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not so sensitive to changes in * or boundary distance as the protons.)

If we wish to explain the difference between the measured and

calculated proton spectra in the 30-100 MeV energy range as quiet-time

solar emission, then we find (by subtraction of the upper curve) a

spectrum for these solar particles which is shown by the squares in

Figure VI-15. We have now included the measured spectrum below 10 MeV

for comparison. We caution the reader that the proton spectrum is

highly variable at energies up to about 30 MeV. (See Figure V-2.) The

spectrum shown here is an average over more than 30 days of data. (See

Table V-1.) The resulting solar spectrum shows a definite decrease in

slope for energies between 10 and 30 MeV. The points above 30 MeV are

very poorly defined but they are clearly consistent with such a feature.

This flattening is a surprising result since observations of solar-flare

spectra have shown a steepening at high energies. On the other hand, a

galactic origin for the spectrum at 10 MeV would require an increase in

the diffusion coefficient at these energies of more than a factor of 10,

which we consider unreasonable. The agreement of the He-nuclei spectrum

(and the electron spectrum, by definition) with the calculation lends

credence to the calculation. The source of the disagreement for protons

may very well lie outside the solar modulation model. Similarly, it is

clear that a change in the input spectrum would affect the spectra from

the earlier years more than it would the 1969 spectrum, so that such a

change again cannot be used to explain the shape of the 1969 spectrum.

The suggestion that solar emission of protons is responsible for the

flatness of the measured spectrum clearly warrants further investigation,

which is outside the scope of this thesis.
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The argument that solar emission may be an important contributor

to the spectrum is supported by other observations; i.e.,

1) The negative intensity gradient observed by Krimigis and Venkatesan

(1969) for energies > 50 MeV/nucleon and the outward streaming

observed by Rao et al. (1967), both during relatively quiet times,

indicate the existence of continual solar emission at even a much

lower level of solar activity than existed in 1969 and 1970.

2) The University of Chicago IMP-5 proton spectrum (Hsieh et al., 1971)

is steeper than our OGO-6 proton spectrum. Their spectrum was

measured in what may be a slightly quieter period. The agreement

between the He-nuclei spectra measured by these two instruments in

the energy range 40-315 MeV/nucleon and the agreement between the

pae and IMP-4 (which is very similar to IMP-5) proton spectra in

1967 imply that the differences noted are real time variations and

not instrumental effects.

3) Kinsey (1970) has presented a strong statistical argument that solar

emission accounts for a large part of the proton spectrum below the

turnup in the spectrum, which he observed as high at 80 MeV, again

at a time when the Sun was much less active than in 1969.

In summary, we have found that the measured spectra of protons

and He nuclei for the years 1965 though 1968 can be understood in terms

of a simple model using separable diffusion coefficients with K indepen-

dent of radius and with the energy dependence similar to that expected

from the power spectra of the interplanetary field. These diffusion

coefficients are also (by the means of their determination) consistent

with the electron spectra. The general trend of the data seems to imply
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an effective boundary for the modulation region within 10 A.U., but this

conclusion is based on data which may be affected by solar emission of

energetic particles and by intercalibration problems between different

dtector systems. The statistics of the data do not allow us to distinguish

changes in the boundary distance from year to year, but we certainly can-

not eliminate such changes. The parameter T clearly increased from

1965 to 1970, as one would expect from, for instance, the neutron -

monitor counting rates (see Figure V1I). A pronounced, but not monotonic,

increase was observed in the parameter R0 , which characterized the change

in slope in the rigidity dependence of the diffusion coefficient. We

also noted that this slope seems to have changed at high rigidities over

the period discussed (1965-1970).

In order to compare the diffusion coefficient used in this

thesis with that calculated by Jokipii and Coleman (1968) from the power

spectra of the interplanetary magnetic field, we must take account of

the transformation from the spiral angle to the radial direction

(Jokipii, 1971) and of the different assumed solar-wind velocities

(they used V = 350 km/sec). Their diffusion coefficient may be specified

as (Jokipii, 1971)

1 (f6.66 x 10 1 2 R R > 2000 MV [A.U 2/

l.5 x 10 R
2

R > 2000 MV Acm2/sec

1.58 x 1020 4- R < 1000 MV

with the power-law segments joined by a smooth curve. The transformation

to the radial direction reduces their diffusion coefficient by a factor
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of about 0.4 at Earth. A solar wind velocity of 350 km/sec reduces our

diffusion coefficient by a factor of 0.875 (to keep K/V or * constant).

With these corrections, our diffusion coefficient, at, for example,

1000 MV, is roughly 1/3 of that of Jokipii and Coleman if we assume a

boundary distance of 2.7 A.U. (using entry number la in Table VI-1).

Using a boundary distance of 6.1 A.U. (entry number lb) we find a

diffusion coefficient essentially equal to that of Jokipii and Coleman

(at 1000 MV).

The measured proton spectra for 1969 and 1970 do not fit very

well to the calculated spectra based on the values of * determined from

electron spectra but the spectra of He nuclei do. For these reasons,

and the other reasons outlined above, we conclude that solar emission

may be important at relatively high energies in 1969 and 1970, but

further study is clearly required.

It should be clear from the discussion in Section VI.F that we

cannot argue that the good agreement for the bulk of the data prove that

any of our assumptionsare valid (i.e., that K is independent of radius

or that D = 2.7 A.U. or 6.1 A.U. or that JD c (W - 0.25m) 2'6 5 It can

be said that these assumptions are sufficient to provide good agreement

between the measured and calculated spectra, especially for the years

1965 through 1968, without complications such as the non-separable

diffusion coefficients, which some authors have argued were necessary

for those years (Burger, 1971; Burger and Swanenburg, 1971) or the

different input spectra for protons and He nuclei used by Lezniak and

Webber (1971) and Urch and Gleeson (1972). We repeat for emphasis:
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We do not argue that the input spectrum has some particular shape or

that some particular functional form is necessary for K(r,T). We do

not argue that K is a separable function; but, simply, that a separable

function is sufficient to reproduce the measured spectra. (We have

found it necessary to change the energy dependence of K with time, but

this measure seems to be well justified. See, for example, Stoker and

Carmichael (1971)). We do not argue that the interstellar proton and

He-nuclei spectra have the same shape; but that, if care is used in the

choice of K(r,T), similar interstellar spectra for protons and He

nuclei are sufficient to reproduce the measured spectra at Earth.
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VII. SUMMARY

In this thesis we have described measurements of the differential

energy spectra of cosmic-ray protons and He nuclei for a substantial por-

tion of the solar cycle at energies up to 315 MeV/nucleon. These

measurements were made with identical satellite- and balloon-borne

detectors. The extensive calibrations of the instruments and the much

improved calculations and measurements of atmospheric secondary production

allow considerable confidence in the reliability of these spectra.

The cosmic-ray spectrum in this energy range is dominated by the

effects of solar modulation and we have studied this phenomenon, using

as tools the measured spectra and numerical solutions of the transport

equation for galactic cosmic rays in the interplanetary medium. We have

investigated:

1) certain characteristics of the transport equation which hold for a

wide range of parameters.

2) the properties of the parameters of the transport equation, in

particular the diffusion coefficient, K.

3) the interstellar spectra, which served as boundary conditions in the

solution of the transport equation.

We have shown that the "modulation parameter",

D

*(r,T) = Vdr', (VI-5)

r

is very useful for studies of solar modulation. This parameter is used

to define the regions of applicability of several analytic approximations

to the solution of the transport equation, i.e., the diffusion-convection
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approximation, the power-series approximation, and the force-field

approximation. The force-field model was found to be useful for weak

modulation (small 4). It is quantitatively correct only for 4 0.1.

It still has roughly the proper radial and energy dependence for * in

the range, 0.1 - -' 2.5, but for 4 > 2.5 it is no longer applicable.

As one would expect from any of these three approximations, the

solution to the transport equation for small 4, i.e., 4 < 2.5, is fairly

well determined by 4 alone (plus, of course, the interstellar spectrum,

jD (T). That is, for 4 in this range (several examples of contour lines

along which 4 = 2.5 are given in Figure VI-5), the spectrum at Earth is

related to the interstellar spectrum by a function of * only, which may

be accurately determined by numerical calculations or more crudely

determined by one of the approximations mentioned above. This dependence

on 4 alone means that we cannot determine separately the diffusion

coefficient, K, the boundary distance, D, or the interstellar spectrum,

jD' from the measured spectra of high-energy protons and He nuclei.

Given good measurements of the high-energy spectra for several years,

limits might be placed on these quantities since K and D are presumably

time dependent, while jD should not be time dependent.

For 4 > 2.5 the situation is quite different. For a wide range

of interstellar spectra and diffusion coefficients the calculated inten-

sities decrease at lower energies and the spectrum at Earth has, at least

roughly, a shape given by j = AT. The solution in this 4 > 2.5 region

is not very sensitive to * or to the interstellar spectrum, but it is

strongly affected by the radial dependence of K, especially for

r 1 A.U. Contour plots of the phase-space density were presented as a
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suitable graphic means of explaining the behaviour of the proton

spectrum at low-energies. Three important points were made about the

behaviour of the low-energy portion of the proton spectrum.

1) Since the low-energy proton spectrum is sensitive to the radial

dependence of the diffusion coefficient, it may be used as a tool

to study that radial dependence.

2) Since the low-energy proton spectrum is not sensitive to the value

of * at the corresponding rigidity, other means must be used to

determine this parameter. In particular, we mentioned that the

electron spectrum can be used to determine 4.

3) Since the calculated spectrum is insensitive to the low-energy

portion of the interstellar spectrum, the measured spectrum of

protons at Earth cannot be used to determine the interstellar

spectrum of low-energy protons.

Since the spectra of protons and He nuclei at 1 A.U. alone

cannot provide enough information to completely define the problem, we

briefly described how other measurements could be used to study solar

modulation. The construction of more complicated models would be

greatly aided by precise measurements of spectra at Earth at high

energies, spectra at larger distances from the Sun, radial gradients and

anisotropies. Such measurements would allow construction of more

detailed models including such possibilities as non-separable diffusion

coefficients, tensor diffusion coefficients, and non-spherical geometry.

The current status of the observational data does not justify such

refinements.
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The obvious test of the validity of these general observations

on the properties of the modulated spectrum of galactic protons and He

nuclei is a comparison between the calculated and measured spectra.

This comparison was made in section VI.G. The calculated spectra were

based on values of * derived from electron data and on input spectra

which gave good fits to the spectra measured near Earth in 1968. The

fact that the measured proton spectra for 1965 through 1968 and the He-

nuclei spectra for 1965 through 1970 fit these calculated spectra

implies that the simple forms used for the diffusion coefficient and

the interstellar spectra in this work are sufficient to explain the

measured spectra with the current uncertainties in the measurements.

The values of t used were tabulated and discussed in Chapter VI.

These values of * were related to the diffusion coefficient by the use

of a simple model in which the diffusion coefficient is independent of

radius within a given boundary distance and infinite beyond that distance.

This allows us to describe the radial dependence of the diffusion

coefficient by a single parameter, the boundary distance, D.

It was shown that the spectrum of low-energy galactic protons at

Earth may be related to the value of D. In particular, we discussed two

ways in which spectra steeper than j = AT might be produced.

1) If the diffusion coefficient is largely independent of radius near

1 A.U. (as we have assumed) and if the boundary is relatively

nearby, then the proton spectrum will be steeper than j = AT.

2) If the diffusion coefficient decreases inside 1 A.U., then the

spectra will be steeper than j = AT.
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The fits to the proton spectra presented in Figures VI-1 and VI-11 are

slightly steeper than j = AT for 1965 through 1968. For those years, at

least, we may infer that either 1) or 2) above is a valid description of

the radial dependence of the diffusion coefficient. If we exclude the

second possibility on the basis of the results of Lupton (1971) and Sari

(1972) then one may conclude that the effective boundary is within about

10 A.U. (for the years 1965 through 1968). This conclusion is clearly

tentative since the statistics of the data are poor, but it is also clear

that more precise measurements of the proton spectrum would allow one to

derive values of D from local measurements.

The diffusion coefficient used to fit the 1965 data is in reason-

able agreement with that determined from the power spectrum of the inter-

planetary magnetic field (Jokipii and Coleman, 1968) for roughly the same

period. We find roughly a factor of 3 change in * from 1965 to 1970, in

contrast to the assertion of Mathews et al. (1971) that the power spectra

of the interplanetary magnetic field have not changed over that period.

If more detailed study of the power spectra confirms this hypothesis,

then the changes in * will have to attributed to changes in the boundary

distance.

The interstellar spectrum used was of the form jD a (W-m)- 65

for both protons and alpha particles. By comparing calculated and

measured proton spectra for 1968 we found a value for p of roughly

p = 0.25 · 0.2, assuming the values of * determined from the electron

data as discussed in Section VI.G (but the interstellar spectra below

about 100-200 MeV cannot be determined in this manner).

In order to explain the shape of the 1969 (and 1970) spectrum we
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found it necessary to invoke the existence of solar emission of protons

at energies up to 50-100 MeV. The fit was improved by assuming a

boundary distance of 9.5 A.U., which is somewhat larger than was used

for the earlier years.

In summary, we find agreement between the calculated and

measured spectra which is generally better than in previous investiga-

tions. We attribute this generally good agreement to the particular

selection of boundary distance in the range used, a range which was

suggested by our current understanding of the propagation of solar-flare

protons. Some slight further improvement of the fits may be gained by

changing the boundary distance from year to year. Even with the larger

boundary distance the 1969 (and 1970) proton spectrum has a small excess

at energies up to about 100 MeV. We have argued that the excess may

well represent solar emission even though this solar spectrum appears to

flatten somewhat at higher energies.
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APPENDIX 1

The Relation Between the Range-Telescope Counting Rate and

Particle Intensity: Derivation and Verification

The equation

0? R N (IV-1)

was specified earlier as the relation between counting rate in the range

telescope and particle intensity. In this appendix the terms in

equationIV-1 will be defined with more detail, the methods by which the

values of these terms were determined will be discussed, and the

verification of these values by calibration will be described. Briefly,

the method of data analysis is as follows: Bins are defined by range

(determined by which detectors are triggered) and energy-loss (PHA's in

D1, D2, and D3, high discriminators in D4 - D7) criteria; and a vector,

N, is defined which has components, Ni, given by the number of events

which meet those criteria for the i'th bin (or the number of events in

the bin) in a time 7. j is a vector with components, j which represent

the intensity in the i'th energy interval with median energy Ei and

width AE
i
. R is a matrix which takes into account the geometrical

factor, G, the width of the energy interval, AE, and the corrections

due to statistical fluctuations in energy loss and nuclear interactions

in the absorber stack.

For low-energy particles (-< 50 MeV/nucleon) the corrections

mentioned above are small and may be neglected. In this case the R

matrix is diagonal and the low energy data were converted to spectra
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using the simple form

N i

i -'. (IV-2)i G
i

AEiT
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A. Two Dimensional Plots and Bins

In this section we show how the range and energy-loss measure-

ments are used to define bins. These bins are illustrated graphically

by two-dimensional pulse-height distributions called 2-D plots. There

is a separate 2-D plot for each useful combination of detectors and

high discriminators triggered. The notation used to label these plots

indicates the deepest detector penetrated (called the range) and the

restrictions on the high discriminator. For instance, the Range 5 HH

(or R5HH) plot has on it events which triggered D2, D3, D4, and D5

(possibly also D1) with the D4 and D5 high discriminators. R6XHH means

D2 - D6 were triggered; the D5 and D6 high discriminators were triggered;

and no restriction was placed on the D4 high discriminator. R4L means

D2 - D4 were triggered and the D4 high discriminator was not triggered.

Table Al-l shows which plots were considered in defining the bins.

Figure Al-l shows a plot of average energy loss in D2 versus

average energy loss in D3 for protons and alphas with the deepest

detector penetrated marked as a parameter along the curves. Note the

segments of the curves marked D5. These segments correspond to Range 5

events. Figure A1-2 shows the Range 5HH plot. The number of events

with a given D2 and D3 pulse height is shown as a function of the D2

and D3 pulse heights. The previously mentioned segments of the D2

versus D3 plot in Figure Al-l are shown again in this plot. Also

indicated are the energy-loss boundaries of the proton and alpha -

particle bins. Thus the Range 5HH proton bin (which is bin number 4)

can be completely described as those events which trigger D2, D3, D4 and

D5 but not D6 or D7; trigger the D4 and D5 high discriminators; and have
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Plot Type Comments

R1 low energy p and He
R2 bins - a variable, sometimes large
R3 number of bins per plot

R4H 3 proton bins
3 He bins for OGO-6
2 He bins for pcxe

R4L 1 electron-meson bin used for back-
ground correction

R5HH 1 proton bin, 1 He bin

R6XHH 1 proton bin

R6HHH 1 He bin

R7XXXX 1 proton bin

R7HHHH 1 He bin

Table Al-l

List of types of 2-D plots and bins. The notation is
explained in the text.
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D2 and D3 pulse heights within the bounds indicated in Figure A1-2.
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B. Effective Time

Dead time during the pCe flight is typically -10%; data loss

due to problems in recording and transferring the data to the FORTRAN

compatible tapes is -5%. The data from the rate scalers allow us to

correct for these effects. Since the rate scalers have a negligible

dead time, they record the total number of events during a given time

interval. We replace the length of that time interval, At, with an

effective time, T, given by

number of analyzable events
total number of events t.

T is used in all flux computations. It should be noted that data

transmission errors occasionally change a rate bit. Since these bits

are read out with each analyzed event and normally change only after

-100 events, we have an extremely redundant readout and can easily

find and correct such errors.
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C. Calculation of Intensities

We define a response function, 6 ?i(E,%), as the probability

that a particle of species X and energy E will trigger an event which

meets the requirements to belong to bin i. Let j(E,X) be the differ-

ential energy spectrum (intensity) of A particles and Ni be the number

of events falling into bin i in an effective time T. Then

- = |Z dE 2 i(E,))J(E,) (Al-l)

The detector design allows us to choose bins such that only one species

contributes to a given bin, hence the summation of A can be dropped. If

we make the (trivial) assumption that, in a given energy interval with

center at E
n
and width AEn, the intensity j can be represented by a

power law in E with exponent Yn and coefficient Cn, then the following

definitions are appropriate:

j(E) - C EYn by assumption in the n'th energy interval.
n

and = Cn EnYn

and Rin E Q i(E)EYn dE/E nYn

If we substitute these definitions into equation Al-l we get

N.

"' = Z R in'T in
n

or
N R 
'13

which may be inverted to give the desired result, equation IV-1. Note
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that i is a function of the yn' s only. The data were analyzed by

assuming a set of ¥n and determining j from equation IV-1. If the

resultant j is not consistent with the y , the procedure was repeated

until a self-consistent j was found. The dependence of R on the ¥n is

small for ¥n in the range 0 to +1, which is appropriate.to the spectra

we measured.
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D. The Response Function

The function 6i(E) was determined by folding together six

functions which are briefly described below, and treated in more detail

in the following paragraphs. C(m
2
, m3, E) is the probability that a

particle of energy E will have an energy loss in channel m2 in D2 and

channel m3 in D3.

Fnon (K, E) is the probability that a particle of energy E

stops in range K due to its ionization energy loss, without having under-

gone a nuclear interaction.

F(J, K, E) is the probability that a particle of energy E will

undergo a nuclear interaction in range J and stop in range K.

H(K, E) is the probability that a non-interacting particle of

energy E will trigger the high discriminator of detector DK.

H'(J, K, E) is the probability that a particle which interacts

in range J will trigger the high discriminator of detector DK.

G(K, E) is the geometrical factor for a particle of energy E

which stops in range K.

Consider, for example, bin 4, which consists of R5HH events

which fall into a specified area (S4) on the 2-D plots (the area

illustrated in Figure A1-2). The response function, Qi(E), for bin 4

is given by

2 4(E) = [F(3,5,E) H'(3,4,E) H'(3,5,E) + F(4,5,E) H(4,E) H'(4,5,E)

+ (F(5,5,E) + Fnon(5,E)) H(4,E) H(5,E)] G(5,E)

[s4E C(m2, m 3, E)] (A1-2)

= P(5,E) · G(5,E) · C4 (E) (A1-3)
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F(1,5,E) and F(2,5,E) are ignored since they are very small and since any

particle which interacts in D1, D2, or D3 is unlikely to fall in S4

because the interaction products will change the energy loss.

P(5,E), defined by the equations above, is the probability that

a particle will stop in R5 and trigger D4H and D5H. C4(E) is the proba-

bility that a particle of energy E will have energy losses in D2 and

D3 inside the limits imposed by the area S4 on the 2-D plots.

The energy loss distribution C(m2, m3 , E) is calculated by the

Space Radiation Lab program "CROSS" which is based on the work of

Symon (1948). The fluctuations in the energy loss in detectors D2 and

D3 are assumed to be uncorrelated; hence, the (continuous) two-dimensional

distribution is simply the product of two one-dimensional distributions.

C(m
2
, m3, E) is a discrete representation of this continuous distribu-

tion which is obtained by integrating over the small rectangle in the

two-dimensional D2, D3 space defined by the widths of channels m2 and

m
3
. Calibrations of the pue gondola made at NASA's Space Radiation

Effects Laboratory (SREL) in 1968 have confirmed the validity of these

distributions. A comparison of predicted and measured energy loss

distributions in D2 is shown in Figure A1-3.

F(J,K,E) and F non(K,E) are derived from a Monte Carlo calcu-

lation ("FLINT") described in the following section, which traces

trajectories of incoming particles and of secondaries from an inter-

action. Extensive accelerator calibrations using both protons and alpha

particles confirm the predictions of the FLINT program. The calibra-

tions are described in Section F of this appendix.
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H(K,E) is determined by integrating the Symon's energy-loss

probability distribution above the threshold of the high discriminator

of D
K
. With the threshold settings in use on pae and OGO-6, H(K,E)

for all ranges K is almost 100% for E;less than about 300 MeV for

protons. It falls rapidly to a value of 20% - 30% at ¼400 MeV and

falls off more slowly at higher energies. Helium nuclei always

trigger the high discriminators.

H'(J,K,E) is assumed to be one for any particle which stops in

the stack, i.e., which does not trigger D7. The reason for this is

that a proton (or meson) which has an energy small enough to stay within

the stack must have an energy loss large enough to trigger the high

discriminators. Electrons would violate this assumption but are not

produced in any significant number at the energies (< 400-500 MeV) we

are concerned with. Even if produced, electrons would almost always

trigger D8 because they are scattered so easily.

G(K,E) is calculated for non-interacting protons (for which

the range K is determined from E by the range-energy relationship) by

a numerical integration over the areas and subtended solid angles of

the several discs which define the geometrical limits of a particle

trajectory. The upper discs are D2, D3 and the opening in the top of

D8; the lowest disc is the cross-section of the absorber stack at the

range corresponding to the energy E (or the opening in the bottom of

D8). The range detectors define intermediate discs through which the

trajectory must pass. For interacting protons the geometrical factor

is approximated by the average geometrical factor for that range as

calculated for non-interacting particles.
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Note that if we omit the summation over the area S4 in

equations A1-2 and A1-3 we can use the response function to predict the

two-dimensional distribution of events on a 2-D plot. This can be com-

pared to measured distributions as a further check on the validity of

the response function.

Since it is difficult to compare graphically two 2-D plots,

the comparison has been made using one-dimensional distributions which

are found by collapsing the two-dimensional distributions onto the

diagonal. All events falling into a band of specified width (wide

enough to contain -90% of the events) are plotted as a function of the

lesser of their pulse heights in D2 and D3. This type of plot is much

more easily read than a 2-D plot, and preserves some of the improved

resolution given by a double measurement of energy loss. An example

is shown in Figure Al-4. The dashed line is the predicted response to

"stopping" protons, those with energies between 156.5 and 235 MeV which

would stop in R5 if they did not interact. The dotted line is the

response to "interacting" protons, those with energies of > 235 MeV

which should have been R6 or R7 events. (The response to protons of

E < 156.5 MeV is zero.) The solid line is the sum of these curves and

should be compared to the histogram which represents measured data from

the pae balloon flights 67C1P and 67C3P. Plots of this type were useful

in determining where the boundaries of the bins should be placed to

include as many stopping particles as possible while excluding inter-

acting particles, i.e., to minimize the ratio of off-diagonal elements

of R to diagonal elements.
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E. The FLINT Program

The FLINT program calculates the functions F(J,K,E) and

Fnon (K,E),which represent the effect of nuclear interactions in the

stack. Figure A1-5 illustrates some of the types of interaction events

which must be considered. The trajectory A is a non-interacting

particle which stops in A5 and is therefore an R5 event. This type

of event contributes to the probability Fnon (5,E). B shows a particle

which interacts in A4 and has a prong leaving the stack, thus triggering

D8. This event would not be recorded. In events C and E we have

examples in which the prongs do not leave the absorber in which the

interaction took place. C is an R5 event and E is an R4 event, even

though both may represent, for example, a 200-MeV proton. Event E

contributes to F(4,4,E) and C to F(5,5,E). D is the sort of event

which contributes to F(5,6,E).

The FLINT calculation is done using Monte Carlo techniques and

is based on cross-sections collected from emulsion data and Monte Carlo

intranuclear cascade calculations. Input data to the program consist of

a geometrical description of the telescope and an interaction length;

multiplicities of "gray" and "shower track" secondaries as functions of

energy; energy distributions of gray and shower tracks; angular dis-

tributions of gray and shower tracks; and a neutron D8 probability. For

incident alpha particles "straight-on" probabilities are also input.

Gray tracks are primarily secondary protons and are treated as

protons in FLINT. Shower tracks are primarily pions and are treated as

such in FLINT. The terminology originates with the emulsion measurements.

The interaction length is determined by the accelerator cali-
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brations described in the next section; the percentage of particles

stopping in the proper range without triggering D8 depends strongly

on the interaction length and very little on the other distributions.

This interaction length is 158.4 gm/cm2 . It is somewhat shorter than

the accepted value of -195 gm/cm2 for tungsten (Chen et al., 1955) but

it represents an effective interaction length in a complicated system

so we do not regard this as a serious discrepancy.

Gray-track multiplicities were originally based on the data

given by Powell et al. (1959), but these multiplicities did not fit

our calibration data; they were too small. We were able to fit our

data best with a curve roughly midway between the multiplicity data

given by Metropolis et al. (1958a;b) for A = 180 (e.g., tungsten) and

the Bertini (1967) data for Pb. Figure A2-3 includes a comparison of

the emulsion data with intranuclear cascade multiplicities for heavy

elements. The differences among these curves, even allowing for the

differences in the definitions of gray and shower tracks and cascade

protons, seem to indicate a real discrepancy. The shower-track mul-

tiplicities given by different authors agree within statistics and we use

this function as given. For both gray and shower tracks.the actual

multiplicity in an interaction is assumed to be an integer; these

integers are assumed to have a Poisson distribution which has an average

given by the input data curves.

-1.2
The energy distribution of gray-track secondaries is E

This function is assumed to be valid for all primary energies; all

multiplicities; all secondary angles, etc. The distribution is cut off
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at the primary energy. Figure A1-6 shows the Camerini et al. (1950)

and Metropolis et al. (1958a;b) data. The shower-track secondaries

are assumed to have an E energy distribution and are also shown in

Figure A1-6.

The gray-track polar-angle distribution which we used was

dn
do a sin (e) exp (1.959 cos 0)

and the shower-track angular distribution was

dn -228cos 4.8 cos0 .3
d a sin 0 (4.027 x 10 2e28 cos + 0.0175e + .1771e cos 0)d)

The gray-track angular distribution is from a fit to the Bertini (1966)

data; the emulsion data were less forward peaked and did not fit our

calibration data as well. The shower-track angular distribution is from

a fit to the emulsion data (Powell et al., 1959).

The possibility that an evaportation neutron from an interaction

might produce a knock-on proton in the plastic scintillator (-5-50% H by

number) of the D8 counter was included. The probability of such an

event was estimated by integrating over the evaporation-neutron spectrum

(Bertini, 1966) and the p-n cross-section (Chen et al., 1968) as a

function of energy, assuming that da /dE was constant for E < E
pn p p n

The probability of such an event was found to be roughly proportional

to E
'
0 5 and is about 10% at E = 500 MeV, where E is the primary energy.

The pulse-height analysis of D8 mentioned in Section A1.F was performed

because of concern that these neutrons might cause a steeply falling

energy loss spectrum in D8.

For alpha particles the same angular and energy distributions

were used as for protons. All multiplicities were increased by a
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factor of 1.6 (this factor was expected to be between 1 and 2 based on

emulsion data (Ceccarelli et al., 1955; Deutsch, 1955, Quareni and Zorn,

1955; Willoughby, 1956; Jain et al., 1959a;b), and was optimized to fit

our calibration data). The interaction length was determined from

the accelerator runs as with protons. It had a value of 117 gm/cm 2

The major difference in alpha-particle interactions is that in -30%

of the interactions there is a "straight-on" secondary; that is, a

secondary leaves the interaction with the same velocity and in the

same direction as the original alpha particle. This phenomenon has been

observed in emulsions by Appa Rao (1956, 1961) and others (Quareni and

Zorn, 1955); it is also quite evident in our calibration data. If

this "straight-on" secondary is a deuteron or triton then the secondary

can penetrate to a deeper range than the primary alpha particle would

have reached -- this feature is observed for alpha particles, but not

for protons. The probabilities of "straight-ons" per interaction which

give the best agreement with our calibration data are:

protons 0.125

deuteron 0.090

triton 0.045

He3 0.045

The results of the calculation for the accelerator telescope

are plotted as solid curves in Figures A1-7 and A1-8, with the

accelerator calibration data shown as points. The curves for the pue

or OGO-6 telescopes are almost identical to that of the accelerator

telescope since considerable care was taken to ensure that the geometry
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and mass distribution were the same for the three telescopes.

The cross-section data used in the FLINT calculation are

fairly crude, especially in comparison with the elaborate specification

of cross-sections in the atmospheric secondaries program (ATSEC)

described in Appendix 2. The three most important reasons for this

are:

1) The geometry is much more complicated than in
ATSEC. Including both complicated geometry
and complicated cross sections would have
made coding difficult and execution expensive.

2) The results needed are simpler than in ATSEC --
deciding if a detector was triggered or not
requires less information than calculating a
spectrum.

3) The program gave the right answer, as verified
by the calibrations.
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F. Calibration of the Range Telescope

The FLINT program, described in the preceding section, calcu-

lates interaction corrections for the range-telescope data on the basis

of nuclear cross-section data. Since these cross-sections are not very

well-known, accelerator calibrations of the range telescope were

considered necessary. The pae gondola was calibrated on the proton beam

at NASA's Space Radiation Effects Laboratory (SREL) in 1968, at energies

from -60 MeV to -600 MeV. These calibration runs are the source of the

measured energy-loss distributions with which we have checked the Symon's

distributions used in the calculation of the C and H functions. The

minimum, reliable beam intensity we were able to achieve at that time,

however, was still high considering the time resolution of the instrument

electronics. Particle "pileup" problems were noted in D8 which is much

larger than D1 - D7. Furthermore, the data-recording rate was too small

to allow collection of enough events for the 1% statistics desired. For

these reasons,a special prototype of the instrument was constructed

which was geometrically identical to the pae and OGO instruments, but

with much better time resolution and much higher data-recording rate.

This prototype was calibrated with protons at SREL at 7

energies from 115 to 570 MeV and with alpha particles at the Lawrence

Radiation Laboratory in Berkeley at 188 and 213 MeV/nucleon.

A schematic of the instrument is shown in Figure Al-9. The

solid state detectors have been replaced with discs of NE-102 plastic

scintillator material with radii and thicknesses equal to those of the

replaced SSD's. The light was piped to the photomultiplier tubes by
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thin strips of lucite about 25 cm long. To allow space for these light

pipes without changing the telescope geometry, it was necessary to

construct D8 of two pieces which overlapped so that they subtended the

proper angles. The two pieces of D8 were referred to as D8a and D81.

Since we were concerned with measuring particle trajectories without

regard to energy loss in D1, D2, or D3 (having already made. energy-loss

distribution measurements in the 1968 SREL accelerator runs), it was

possible to combine D1 and D2 into a single detector D12. By using

scintillators and refraining from doing a pulse-height analysis, we

were able to use fast electronics composed primarily of NIM standard

modules.

The layout of the experiment is included in Figure Al-10. The

beam was defined by counters Al, A2, and B. B had a 1/2" diameter hole

in its center and was in anticoincidence with the A counters. Al was

1-1/2" in diameter, A2 was 2" in diameter, both were 1/4" thick. A3

and B were 8" x 8-1/2" x 3/8". A3 was included in the AB coincidence

to help prevent accidental coincidences; its main purpose, however, was

to guard against a "pileup" or accidental coincidence between a

particle in the beam and one several inches off the beam. One of its

outputs was connected to a "Pileup Gate" which signaled if it received

two pulses within a preset time (100 ns).

Figure Al-10 is a block diagram of the electronics. There were

two almost independent data systems. One consisted entirely of NIM

logic whose output was recorded in visual display scalers. This system

allowed on-line monitoring of the experiment. Al, A2, A3, D12, and D3
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were in coincidence,with B in anticoincidence to form a trigger signal

which initiated analysis of an event. D4, D5, D6, and D7, or their

logical complements, were fed to a coincidence gate to determine the

range requirement. For example, if one wished to know what fraction

of events were R5, the R coincidence requirement was D4D5D6D7. To

analyze a different range event the inputs to the R coincidence gate

were manually changed and another run made. The D8 signal was formed

by the logical or of D8a and D8P. A3 was fed to the pileup gate as

mentioned before and the not-pileup signal (P) gated the signals fed to

the scalers.

The parallel data system recorded data directly from the

discriminators. The signals from D4, D5, D6, D7, D8a, and D8P were

gated by the TP signal from the NIM system. The outputs from this gate

were fed to a buffer-interface system and recorded on magnetic tape.

In addition to the systems described above, D8a or D8P was

pulse-height analyzed during some runs. This analysis was done,because

of concern over the fact that a sharply falling energy-loss spectrum

in D8 would cause the percentage of events triggering D8 to be strongly

dependent on discriminator threshold setting. It was confirmed, in

fact, that the D8 spectrum is roughly flat out to many times the

discriminator threshold level so that the D8 percentage is insensitive

to threshold setting.

The results of these measurements are shown in Figures A1-7

and A1-8 along with the predictions of the FLINT program.

The beam energies were measured by measuring particle ranges
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with a variable-thickness absorber. In order to preclude the possi-

bility that low-energy contamination of the beam might be present, we

studied the energy-loss distribution as well as the range distribution'

of the beam and found no evidence of any such contamination.
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APPENDIX 2

Production of Secondary Protons

in the Atmosphere

In 1969 and 1970 simultaneous measurements of the differential

energy spectra of protons (which included a small contribution from

unresolved deuterons and tritons) up to 315 MeV were performed with the

pCue instrument, flown on balloons from Fort Churchill, Manitoba, and the

OGO-6 instrument, in polar orbit, This joint experiment was the first

to make simultaneous measurements over a large energy range with

identical instruments. These data, which include the spectra at the top

of the atmosphere, make it possible to study the production of

atmospheric secondaries with more accuracy than was previously possible.

In order to carry out this study we have made extensive calculations

of this production.

Our calculation uses a Monte Carlo method based on the nuclear

cross sections for protons in 016 and other elements as calculated by

Bertini (1963, 1966, 1967, 1969) and others (Alsmiller and Barish, 1968;

Bertini and Guthrie, 1970) at Oak Ridge. Previous calculations have

used numerical integrations of simplified forms of a transport equation

with cross-sections measured in nuclear emulsions (except see Alsmiller

and Boughner (1968)). In this appendix, we shall discuss briefly some of

the previous calculations of other investigators; describe our own

calculation and the cross-sections upon which it is based; and compare

the results of previous calculations with our improved results.
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A. Previous Calculations

Previous atmospheric-secondary calculations have been of two

types. The simpler case was when emulsion measurements of secondary

production were used to correct emulsion measurements of particle flux.

The more complicated case involved the use of cross sections derived

from measurements made in emulsion to correct particle fluxes measured

with counter telescopes.

Fichtel et al. (1964) and Freier and Waddington (1965, 1968)

have used emulsion data to calculate secondaries which are then used to

correct their cosmic-ray fluxes measured with emulsions. In these cases

the secondaries can be evaluated from data measured on the same flight

and in the same emulsions in which the total fluxes are measured. If

this technique is used,it is not necessary to determine the producing

spectrumj and scanning inefficiencies and such problems will tend to

cancel out. One must, however, make corrections to the data for

differences in the emulsion and air cross-sections; this has

typically been done by multiplying by a single normalization factor,

which is evaluated by comparison with cross-sections from nuclear-cascade

calculations. Emulsion data typically are available only in small

quantities, leading to problems with statistical fluctuations. A more

complicated calculation is necessary when emulsion data are used to

calculate corrections for spectra measured with counter telescopes as

done first by Vogt (1962) and recently by Rygg and Earl (1971).

In these calculations,the response function determined from the

published emulsion cross sections must be folded with a producing
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spectrum, which is not very well known. Scanning inefficiencies may

introduce serious absolute errors and the correction for the differences

in air and emulsions must still be made. Vogt, in the earliest

calculation of this type, included the attenuation of the primary

spectrum and the production of secondaries by secondaries in a crude

fashion by using the data of Lord (1951) to define the producing

spectrum. Rygg has assumed a constant producing spectrum, or "source

function." The published,emulsion cross-section data are not very

detailed and effects such as the change in angular distributions of

secondaries with primary and secondary energy are not well defined

because the statistical accuracy is insufficient.
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B. Method of Calculation

Our experience in doing the FLINT calculations of interaction

corrections in the range-telescope stack (described in Appendix 1), and

in comparing them with accelerator calibrations caused us to distrust

the emulsion data. This fact, combined with the lack of detail in the

emulsion cross sections, led us to decide to use other available cross-

section data. The data published by Bertini and his co-workers at Oak

Ridge (Alsmiller and Barish, 1968; Bertini, 1963; Bertini, 1966;

Bertini, 1967; Bertini, 1969; Bertini and Guthrie, 1970) form the most

detailed and comprehensive set of cross-section data available and

these data have been used in the calculation described below. Since

these data are much more detailed than the emulsion data and, since we

wanted to make our model as detailed as necessary, a Monte Carlo

technique was most appropriate to do the calculation. It would be very

difficult even to write down a transport equation including effects such

as production of secondaries by secondaries and change of producing

spectrum with depth -- to solve such an equation would, of course, be

even more difficult.

Figure A2-1 is a schematic representation of proton and alpha-

particle cascades in the atmosphere. It illustrates the physical model

upon which our calculation is based. The Monte Carlo program, called

ATSEC, begins by generating a primary proton or alpha particle, which

is incident upon the top of the atmosphere at a specified energy and

with an angle of incidence generated from a random number in a manner

designed to reflect an isotropic distribution over the upper hemisphere.
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This particle is traced until it stops due to ionization energy loss,

or interacts. If it interacts, secondaries are generated according to

the cross-sections and each secondary is traced as was the primary. The

process is repeated with each interaction until all particles generated

have either stopped or left the atmosphere. The ATSEC program writes on

magnetic tape a description of each particle containing its order, type,

energy, range, polar angle, and starting and stopping depths. Order is

1 for primaries, 2 for secondaries, 3 for tertiaries, etc. Type is

proton, neutron, deuteron or alpha particle. The "energy" is evaluated

at the beginning of the particles path, and the "range" is the ionization

energy loss range of a non-interacting particle corresponding to this

energy. The secondary spectrum at any given depth is calculated by

counting all the particles which cross that level and assigning them to

bins according to order, type, energy, angle, and energy and type of the

primary. The counts in the appropriate bins are then multipled by a

weighting factor, k, which reflects the spectrum at the depth of interest.

The weighting factor is derived by knowing the number of primaries

incident at the top of the atmosphere in a given energy interval,

No (E, AE), (this number is part of the input to ATSEC and is picked

to be large enough that statistical fluctuations will not be

important; it is typically 1000 for an energy interval of 5%) and by

knowing (by assumption) the intensity of primaries, jp, at the top of the

atmosphere. Thus, if Np (E, AE, e, AO, T) is the flux of primaries at
P
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a depth T in the atmosphere with energy between E and E + AE and polar

angle between e and e + Ae, there exists a factor k'(E) which relates

N to jp by j (E + 1/2AE, T) = N (E, AE, e, Ae, T) * k'(E). The same

AE * G · At

factor applies to secondaries created in cascades initiated by primaries

with energy between E and E + AE. G is the geometrical factor,

G = n.A* [cos2 e - cos (e+Ae)] (A2-1)

and AA and At are increments of area and time and may be taken to be

unity. If we absorb the constant factors into the weighting factor,

k(E) k'(E)-
it AA -At

and set 0 = 0, Ae = t/2, and T = 0, we get

jp (E + 1/2AE, 0) * AE
k(E) = N (E, AE, 0, g/2, 0) (A2-2)

or
j (E + 1/2hE, 0) ' hE

k(E) = N (E, E (A2-3)
N

O
(E, AE)

Note that for the geometrical factor to be meaningful we must pick an

angular interval within which the intensity is isotropic - for primaries

at the top of the atmosphere this is true over the upper hemisphere.

The choice of 0 = 0 and Ae = n/2 in equations A2-2 and A2-3 is convenient

but any e, hA in the upper hemisphere will give the same k. For

secondaries e is the direction of interest (e = 0 for atmospheric

secondary corrections, 0 = 1800 for splash albedo) and AO must be small

enough that the flux is roughly isotropic.

Given the weighting factors, k, and the counts in the secondary

bins, Ns, where
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Ns =Ns (Es 6Es, 9, A, r, Ep),

Es is the secondary energy, and E is the energy of the primary which

initiated the cascade then

s (Es +2j (E +-S, T, e, A9) =
1

( AE) 'G * (At)
E

E
P

N (Es ,E s,e,Ae,T,E)k'(E )

1

AsE [cos2e-cos (e+A) ]
s

Z Ns(..., Ep)k(Ep)
E 
P
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C. Details of the Model and the Cross Sections

Since the accuracy of the calculation is limited by that of

the interaction cross-sections which form the input to the ATSEC

program, these will be discussed in some detail. Other important

details are the atmospheric model and the energy loss of charged

particles -- these are also discussed in this section.

The atmosphere is assumed to be a planar slab with a "top" at

O gm/cm and a "bottom" at 600 gm/cm . No model for density versus

altitude is needed provided the geomagnetic field is vertical (certainly

a good approximation at Ft. Churchill) and the atmosphere is planar.

Assuming a planar atmosphere requires that the scale height (-8 km) be

small in comparison to the radius of the earth, which is a reasonable

approximation. If, for instance, we consider a primary arriving at a

depth of 1 gm/cm
2

at a polar angle of cos
'

1
(.1) - 84 , i.e., almost

horizontal, then in the Earth's atmosphere it would have traversed

9.06 gm/cm2. Only 1% of the primaries are incident at angles larger

than this and the discrepancy becomes smaller at greater depths. The

"bottom" of the atmosphere is that depth below which no more interactions

take place and has the main purpose of saving time in the computation.

It is justified by the fact that very few particles ever reach this

depth.

Note that the inclusion of pions would have required a density

versus altitude model,but the lifetime of pions is short enough that

they almost always decay before undergoing a nuclear interaction in the

quite tenuous medium of the atmosphere.
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Ionization energy loss is computed in the program by a sub-

routine version of the Space Radiation Lab library program "ENLO" which

uses a power-law interpolation scheme based on the Janni (1966), and

Barkas and Berger (1964) tables. The accuracy of the ENLO program is

limited only by the accuracy of the tables.

The first cross-section used by ATSEC in processing each

particle is the total inelastic cross-section or interaction length.

The proton cross-section is a function of energy and,therefore, changes

as the proton moves along its trajectory, losing energy by ionization.

It was considered too complicated to include this feature, and an

approximation was used in which the total interaction probability

Pint (Eo) is specified as a function of the initial energy of the

proton. A constant average interaction length, X(Eo) is calculated

which gives the same probability of interacting, that is

P(Eo)

r
o

EZi ri1 (x)

Pint(E) = 1 - exp -N dx i i 1 (

0

= probability that a proton interacts before

stopping due to ionization energy loss

where

N is Avogadro's number.

P(Eo) is the total pathlength of the proton.

r. is the faction of the i'th element in the mixture (air).
1



118

a. = a. (E(x)) is the total cross section of the i'th1 .

element for protons of energy E(x).

A. is the atomic weight of the i'th element.

The integral is calculated by changing variables and integrating over

energy instead of pathlength

dE

Pint =1 - exp rN dE/dT i r i Ai (

o

where T is the depth in gm/cm . The average interaction length X(E )

is defined by

Pin (E) = 1 -eR

where R is the range of the proton. This average interaction length is

a function only of the initial energy of the proton and does not change

along the path. The function Pint is tabulated by Janni (1964) who

used primarily the cross-sections of Bertini (1963, 1966), and

Metropolis et al., (1958a;b). Figure A2-2 is a plot of 1-P versusint
range. The slope of this curve at any given energy is determined by

the total cross section for a proton-air interaction at that energy.

The average interaction length k(Eo) defined above is determined by the

slope of the line connecting the point (1-Pin
t

(Eo), Eo) with the upper

left-hand corner (the point (1,0)).

The neutron interaction length is also specified as a function

of energy, but since the neutron energy is assumed constant along its
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path no averaging was needed. The cross-sections were taken from

12 16 14
Bertini (1966) for C and 0 . The N cross-section was taken to be

the average of the C1
2
and 016 and the N1 4 and 016 cross-sections were

used to calculate K(Eo) in air.

For both protons and neutrons it was necessary to extrapolate

cross-sections to higher energies. Since the Bertini cascade calculations

are based on the pp and np cross-sections, the air cross sections were

assumed to behave in a similar manner-- i.e., almost constant above 2 GeV.

The average multiplicity of cascade protons for 0 is shown

in Figure A2-3, with the emulsion data and the heavy element data from

intranuclear-cascade calculations. One finds a discrepancy between the

cascade data and the emulsion data, even allowing for the differences

between gray and shower tracks and cascade protons. The 016 data are

quite different from either the emulsion data or the heavy-element

cascade data. The C1
2
data were essentially identical to the 016 data,

justifying the use of the 016 curve for air. Bertini (1966, 1967)

gives the multiplicity distributions as a function of energy as well as

the average multiplicity. These distributions were used in the

calculation.

12 16
For evaporation protons and deuterons the C and 0 data

were used to calculate the multiplicity in air. No evaporation

particles were generated with an energy less than 10 MeV/nucleion; this

energy is therefore the lower limit of the validity of the computation.

The energy spectra of evaporation particles were used to adjust the

multiplicities for the lack of particles of <10 MeV/nucleon. These
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energy spectra (above 10 MeV/nucleon) were fit by exponentials of the

form,

N(E) a e'E/Eo

An isotropic angular distribution was used.

Evaporation particles were not allowed to interact; this was

done to simplify program coding and should have no significant effect

on the results. Since neutrons were included only for the reason that

they might interact and create more protons, evaporation neutrons were

not included. Therefore the neutron spectra calculated from ATSEC

results are deficient below about 20-30 MeV.

The angular distributions for cascade particles were taken

from Bertini (1966, 1967) in tabular form and fit with simple functional

16
forms for coding purposes. The data used were for 0 . The distributions

were parameterized by primary type and energy and secondary type. The

energy distributions for cascade particles were taken from Alsmiller

and Barish's (1969) fits to the Bertini data and were parameterized by

primary type and energy, secondary type, and angle of emission of

secondary. The correlation between angle of emission and energy is

important since the energy distributions are quite different in the

forward and backward directions.

The spectrum of secondaries produced by primary alpha particles

was calculated in a manner similar to the method used for the primary

protons. The cross sections were assumed to be the same as for the

protons with the following exceptions:
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1) the total interaction cross section was
assumed to be constant, with a value for
X of 45 gm/cm2,

2) the average multiplicities were increased
by a factor of 1.5,

3) there was a 12.5% chance of generating a
"straight-on" proton and an 8% chance of
generating a "straight-on" deuteron. The
"straight-on" particles are secondaries
which continue in the same direction and
at the same velocity as the primary.
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D. Fit to the Measurements and Comparison with Previous Results

In Figure A2-4 we show two of the measured proton intensity

versus altitude (T) curves for 1969, including a point at 0 gm/cm2

derived from the OGO-6 measurements. The smooth curves are the results

of the ATSEC calculation. They have been fit to the data by

multiplying the calculated secondaries by a constant factor, independent

of energy and depth. This factor compensates, at least to first order

in T/X, for uncertainties in interaction length, multiplicity, and input

primary spectrum.

The factor has the value 1.13 and is a small correction

considering the uncertainities in the calculation.

Figure A 2-5 is a comparison of our results with those of

other investigators. The spectrum of secondaries at 3 gm/cm is shown.

The appropriate dates are shown in the figure because of the possibility

that time variations of the primary input spectrum might invalidate

the comparison. Since the level of solar modulation for 1963-1964 is

not significantly different from 1966, and for 1965 is only slightly

different from either (see, for instance, Figure V-l), time variations

should not seriously affect the comparison.

Our curve is calculated for the assumed 1966 primary input

spectrum using the factor of 1.13 derived from the 1969 measurements.

The curve attributed to Fichtel was calculated at Caltech using data

supplied to us in a private communication. The Teegarden (1967a, 1967b)

data were given by the author as points but they do not represent a

direct measurement of secondaries, as do our data.
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The fact that our calculation agrees with the measurements

made in and above the atmosphere within a 13% correction gives us

considerable confidence in using our results to correct data obtained

from balloon-borne instruments to the top of the atmosphere.
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Schematic cross-section of the range telescope. The geometrical factors
(An) given are nominal since the geometrical factor is a function of
energy.
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Figure II-2: Calculated average energy loss of protons and alpha
particles in various range-telescope detectors as a function of incident
kinetic energy. The deepest detector penetrated is noted along the
incident-energy scale. Vertical incidence is assumed.
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Schematic cross-section of the terenkov telescope.
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Average energy loss in 100Ql of silicon versus relative derenkov-light
intensity for H through 0 nuclei. The error bars on the H curve indicate
30% (FWHM) resolution for ionization energy loss and 35% resolution in
6erenkov-light intensity. These values are typical of the eerenkov-
telescope system.
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Figure II-5: Schematic block diagram of the pue electronic-logic
system. The range-telescope logic is illustrated in (a) and the
terenkov-telescope logic in (b) for simplicity, but many of the
components are cormmon to the two systems.
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Figure III-2

Plot of the counting rate of D2D3D8 events in counts per second versus
time for the balloon flight shown in Figure III-1.
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Figure III-3: Plot of several event counting rates versus time for the
OGO-6 instrument for one orbit. The curves of interest are described
in the text. The scales for the counting rates are logarithmic with
decades indicated by tickmarks. The plots are described in detail in
the thesis of Murray (1970).
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or production by nuclear interactions in the atmosphere.
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Figure V-1: Deep River neutron-monitor counting rate versus time. The
arrows indicate times of balloon flights and the bars indicate periods
for which OGO-6 spectra have been calculated.
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Figures V-2a through f: Monthly summary plots used to select quiet
periods in 1969 and 1970. For the indicated month the following
information, starting at the top, is plotted vs. time:

1) The average polar D1D8 counting rate in cts/sec (labelled D1) is
plotted logarithmically. This rate is nearly insensitive to
electrons but responds to nuclei from ~1.2 to -20 MeV/nucleon.

2) The average polar D2D8 counting rate in cts/sec (labelled D2) is
plotted logarithmically. This rate responds to electrons > 200 keV
and to nuclei > 3 MeV/nucleon.

3) The average polar D1D2D8 counting rate in cts/sec (labelled D1D2)
is plotted logarithmically. This rate responds to nuclei from
-3 to -20 MeV/nucleon.

4) The average polar D2D3D8 counting rate in cts/sec (labelled D2D3)
is plotted logarithmically. This rate responds to electrons
> 1 MeV and nuclei > 19 MeV/nucleon.

5) The > 10 MeV solar proton fluxes measured by the Solar Proton
Monitoring Experiment aboard Explorer 41. This cosmic ray telescope,
which is described briefly in the ESSA descriptive text, also has
some electron sensitivity. The large rate excursions repeated at
-4.3 day intervals are due to the periodic passage of the satellite
through the earth's radiation belts. These excursions have been
largely suppressed by the plotting program.

6) Normalized hourly average counting rates for 2 neutron monitors:
Alert (upper line) and Deep River.

7) The standardized K-index of geomagnetic activity from twelve
observations are averaged to obtain K. The quasi-logarithmic Kp
scale ranges from 0 (quiet) to 9 (ver disturbed). The legend
for the plots is identical to that adopted by ESSA.

8) Geomagnetic storm sudden commencements (labelled SC) are indicated
by solid triangles if confirmed and by open triangles if unconfirmed.

9) Magnetogram sudden impulses (labelled SI) are indicated by solid
diamonds if confirmed and open diamonds if unconfirmed.

10) Optical solar flares (labelled SOLAR FLARE) of importance greater than
2F observed by the world-wide system of solar observatories are
indicated by a small vertical line plotted at the beginning time of
the flare. The importance (2N, 3B, etc.) is included. Periods of no
flare patrol are indicated by horizontal lines of appropriate length.

o

11) 2 - 12A solar x-ray flares (labelled X RAY) with a peak flux at least
4 times the ambient value are indicated by a vertical line. These
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data were collected by experiments aboard Explorers 33 and 35.

12) Occurrences of type-IV radio
indicated by vertical lines.
ciated with the acceleration

emission (labelled TP IV RADIO) are
This radiation is normally asso-
of solar flare electrons.
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Figure V-2d
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Figure V-3

The differential intensity spectra of protons for solar quiet times in
the years 1966 through 1970. The full circles represent the 1966
spectrum, the open squares 1967, the triangles 1968, the full squares
1969, and the open circles 1970. (See table V-l). The vertical error
bars indicate one standard deviation assuming Gaussian statistics.
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The differential intensity spectra of He nuclei for solar quiet times
in the years 1966 through 1970. The full circles represent the 1966
spectrum, the open squares the 1967-68 spectrum (averaged for lack of
data), the full squares 1969, and the open circles 1970. (See Table V-2.)
The vertical error bars represent one standard deviation assuming Gaus-
sian statistics.
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Kinetic Energy, T (MeV)
Figure VI-l

Calculated and measured proton spectra for 1968. The upper curve is
the input (interstellar) spectrum assumed for the calculation. The
reader should keep in mind that (as will be discussed later) even
though the input spectrum is plotted over the same energy range as the
spectrum at Earth, the solution is not sensitive to the low-energy
portion of the input spectrum.
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Figure VI-2: Some of the rigidity, R, and heliocentric-radius, r,
dependences of the diffusion coefficients used in this thesis are
illustrated. The velocity of the particle, A, has been factored out
of the energy dependence. The fR dependence illustrated by the solid
line at low rigidities gives a better fit to the observed spectra
than the RO dependence shown by the dashed line. The R dependence
was sometimes used to facilitate making calculations with the force-
field model.
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Figure VI-3

Calculated and measured proton spectra for 1968 as in Figure VI-1.
In this figure the ordinate is phase-space density, F, rather than
intensity.
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Figure VI-4: Illustration of the dependence of the phase-space density,
F, on the two variables, heliocentric radius, r, and kinetic energy, T..
Figure VI-4a is a plot of F versus T at r = 1 A.U. Figure VI-4B is a
plot of F versus r at 50 MeV. Figure VI-4c is a perspective plot of F

versus r and T. The heavy lines indicate the cross-sections which are
shown in a and b.
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Figure VI-5: Contour lines of constant phase-space density in the
radius-energy plane. The radial and rigidity dependence of the dif-

fusion coefficient is indicated on the contour plot and is schematically

illustrated in Figure VI-2. The dotted line is the * = 2.5 contour line
and is intended to separate the r-T plane into two regions -- large- and

small-modulation regions.
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lop

E
D = 35.0

CD 2.7

10 3 1

Figure V (I-6%.. K KT)
Q-

held constant

Kinetic Energy, T (MeV)
Figure VI-6

Calculated spectra of protons at Earth for various values of the boundary
distance, D. The upper curve is the input spectrum, the lower curves
are calculated for various values of D. The magnitude of the diffusion
coefficient, K, is scaled to keep the modulation parameter, *r, constant
at Earth. The rigidity dependence of K is the same for all curves in
this plot. The D values used are 2.7, 4.4, 6.1, 12.9, 18.0, and 35.0
A.U. The curves corresponding to 2.7 A.U. and 35.0 A.U. are labeled
and the intermediate curves form a monotonic sequence.
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Figure VI-7

Calculated spectra of protons at Earth for various interstellar spectra.

The dash-dot curves and the solid curves form corresponding pairs of

interstellar and Earth spectra. The two calculated spectra are both

good fits to the measured proton spectrum-for 1968 (see again Figure

VI-1). The diffusion coefficient used with the kinetic-energy power-law

input spectrum is roughly a factor of 3 smaller than the diffusion co-

efficient used with the total-energy power-law input spectrum. The

shaded area with the total-energy power-law spectrum indicates schema-

tically the range of values of the intensity in interstellar space which

would yield the same spectrum at Earth without changes in the diffusion

coefficient.
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Figure VI-8: Three examples of radial intensity gradients calculated
for characteristic sets of parameters. In each case K is adjusted so
that the calculated spectrum at Earth is roughly the same as that meas-
ured in 1968. The radial gradient is plotted as a function of radius
for two different energies, 25 MeV and 500 MeV. At low energies the
gradient is small and essentially independent of K or JD, The gradient
at large energies is roughly inversely proportional to K.
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Figure VI-9: Contour lines of the radial component of the anisotropy
are plotted in the r-T plane. The value associated with each contour
line is indicated on the plot. The arrows are intended to remind the
reader of the sense of flow associated with the sign of the anisotropy.
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Figure VI-10: Calculated spectra of protons (a) and alpha particles
(b) at Earth for the four epochs -- 1965-66, June-October 1968, June-
July 1969, and June-July 1970 -- which correspond to the entries num-
bered 2, 4, 5, and 8 in Table VI-1, i.e., those determined from the
electron data. The assumed interstellar spectra shown are of the form
jD a (W - 0.25m) .65. The dashed curves correspond to a boundary
distance of 6.1 A.U. and the solid curves, to 2.7 A.U. The reader is
cautioned that, even though the input (interstellar) spectra are plotted
over the same energy range as the spectra at Earth, the calculated spec-
tra are not sensitive to the low-energy portion of the input spectra.
The range of uncertainty is schematically indicated by the shaded area
in Figure VI-7.
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Figure VI-ll: The measured spectra of protons are compared with the
most appropriate (nearest in time) of the calculated spectra shown in
Figure VI-lOa. The dashed curve is calculated for a boundary distance
of 6.1 A.U. and the solid curve, for 2.7 A.U. The measured spectra
are represented by points. The Caltech data are represented by full
circles and are discussed in Chapter V. (VI-lla) The observational
data are from the collection of Gloeckler and Jokipii (1967). Not all
of the observations were made in 1965 but they should all be roughly
appropriate to solar minimum. The calculation is based on entry
number 2 in Table VI-1. (VI-llb) The triangles are from Fan et al.
(1968). The calculated spectra are again for entry number 2 in
Table VI-1. (VI-llc) The open squares are from Hsieh (1970). The
calculation is based on entry number 4 in Table VI-1. (VI-lid) The
open squares are from Lezniak and Webber (1971). The calculated
spectra are for entry number 4 in Table VI-1. (VI-lle) The open
squares are from Hsieh et al. (1971). The calculated spectrum is
for entry number 5 in Table VI-1. (VI-llf) The calculated spectra
are for entry number 8 in Table VI-1.
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Figure VI-12: The measured spectra of He nuclei are compared with the
most appropriate (nearest in time) of the calculated spectra shown in
Figure VI-lOb. The dashed curve is calculated for a boundary distance
of 6.1 A.U. and the solid curve, for 2.7 A.U. The measured spectra are
represented by points. The Caltech data are represented by full
circles and are discussed in Chapter V. (VI-12a) The observational
data are from the collection of Gloeckler and Jokipii (1967). Not all
of the observations were made in 1965 but they should all be roughly
appropriate to solar minimum. The calculation is based on entry
number 2 in Table VI-1. (VI-12b) The triangles are from Fan et al.
(1968). The calculated spectra are again for entry number 2 in
Table VI-1. (VI-12c) The open squares are from Lezniak and Webber
(1971). The calculated spectra are for entry number 4 in Table VI-1.
(VI-12d) The triangles are from Mason (1972). The calculation is
based on entry number 5 in Table VI-1. (VI-12e) The calculated
spectra are for entry number 8 in Table VI-1.
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Figure VI-13:
nuclei (b) for
entry number 1

Calculated and measured spectra of protons (a) and He
1965. Same as Figures VI-lla and VI-12a except that
from Table VI-1 has been used for the calculation.
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Figure VI-14

Calculated and measured proton spectra for 1967. Same as Figure VI-llc
except that entry number 3 from Table VI-1 has been used for the calcu-
lation.1lat ion.
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Figure VI-15: Calculated and measured proton spectra for 1969. The
calculated spectra are intermediate to those presented in Figure VI-11
for 1969 and 1970 and assume a boundary distance of 9.5 A.U. The
numbers 6 and 7 associated with the curve refer to the entry numbers in
Table VI-1. The squares represent the difference between the measured
spectrum and the upper calculated spectrum (labeled number 6). The
power-law curve drawn through the low-energy points is intended to
emphasize the fact that the spectrum flattens at about 10 MeV.



194

1000.0

Energy (MeV)

Figure VI-15

100.0

10.0

1.0

a)

..

0

v

U)E

U)

CUC:

0.1

0.01



195

!: r _ V -- Amplifier
Saturation

u6 6
0

4-

>40 40 004

DD
0~~~~~~~~~02

0 2 4 6 8 10 12

Energy Loss in D2(MeV)

Figure Al-1

Average energy loss in D2 versus average energy loss in D3 for protons

and alpha particles. The deepest detector penetrated is marked along

the curve.
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Figure A1-2: Number of events with specified energy loss in D2 and
D3 for 21 days of OGO-6 data. The channel numbers have been pseudo-
logarithmically compressed for plotting purposes. The line segments
inside the bins correspond to the segments in Figure Al-l which are
marked "D5" as explained in the text. The bins are calculated to
contain about 90% of the stopping particles and about 50% of the
interacting particles. The excess of events with channel numbers
less than about 6 is due to electrons.
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Figure A1-3

Two examples of calculated (smooth curve) and measured (histogram) energy

loss distributions in pee detector D2 for a monoenergetic proton beam of
the indicated energy. The curves are normalized to peak height rather
than area.
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Figure A1-4: Calculated (smooth curves) and measured (histogram)
diagonal channel distributions. The dashed curve is the calculated
distribution of stopping protons, the dotted curve is for interacting
protons, and the solid curve is their sum. The areas are normalized.
The measured data are from flights 67C1P and 67C3P. The minimum or
diagonal channel convention is discussed in the text.
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Figure A1-5

Schematic illustration of some types of nuclear-interaction events

considered in making corrections to the data. These events are dis-

cussed in the text.
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Figure A1-6

Spectra of gray and shower tracks. The smooth curve labeled "Gray
Tracks" is the spectrum of gray tracks measured in emulsions exposed
to cosmic rays by Camerini et al.(1950). The "Cascade Protons" as
calculated by Metroplis et al. (1958b) should be comparable. The Cas-
cade proton curve was calculated for the reaction p + U2 3 8 - p + (other
particles) at 460 MeV. The open circles represent the emulsion data for
shower tracks (Camerini et al., 1950) and the crosses represent the cal-
culated spectrum of pions from the reaction p + Pb2 0 7 -t n + (other
particles) at 750 MeV. (Bertini, 1967).



203

Figure A1-7: Calculated (curves) and measured (points) probability
that a proton will stop in a given range with and without triggering
D8. The statistical error in the points is given by the size of the
point and the statistical error in the curves is typically slightly
larger.
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Figure A1-8:
these curves
"straight-on

Same as Figure A1-7 but for alpha particles. Note that
have tails both below and above the peak because of the
particles."
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Figure Al-9: Schematic of the accelerator version of the range tele-
scope. The D8 anticoincidence "cup" is enlarged and separated into
two pieces to allow space for the light pipes, but it still subtends
the same angles.



208

o'a,)



209

Figure Al-10: Schematic illustration of the beam layout for the accel-
erator calibrations and the electronic logic and data recording system.
Details are given in the text.
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Figure A2-1: Schematic of model atmosphere and interactions. Solid lines
are charged particles, dotted lines are neutrons. The circled numbers
indicate the "order" of the particle -- primary, secondary, etc. Note that
the a particle has a straight-on secondary.
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Figure A2-2

The quantity 1 - Pin(Eo) is plotted versus range (at Eo) for protons.
Both quantities are from Janni (1964).
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Figure A2-3: Secondary proton multiplicities determined by several
investigators for various materials. The heavy curve (Bertini, 1966;

1967) is for 016 , all the others are for heavy elements. There is
clearly an important difference. The curves labeled n and n + n

g g s
are multiplicities of gray tracks and gray + shower tracks in emulsions
(Powell et al., 1969). The curves with points are after Metropolis et
al. (1958a; b) (Ru) and Bertini (1967) (Pb).
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Proton intensity is plotted as a function of pressure altitude in thei

ultaneously with the pe and G- systems in 199.
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Figure A2-4

Proton intensity is plotted as a function of pressure altitude in the
atmosphere. The curves are calculated. The points were measured sim-
ultaneously with the poe and OG0-6 systems in 1969.
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Figure A2-5

Intensity of secondaries at an altitude of 3 gm/cm2 as determined by
several investigators. --- (Freier and Waddington, 1968), ... (Rygg
and Earl, 1971), protons, *protons + deuterons, (Teegarden, 1967a),
-.-See text.
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